Does a double principal-value integral exist?

  • Thread starter aheight
  • Start date
  • #1
aheight
320
108
Homework Statement
Does a double-integral with a principal-value converge?
Relevant Equations
Not sure
Encountered this integral and I believe it converges by studying it numerically but not sure and was wondering how might I show it converges or diverges? Surely there must be a way.
$$
\text{P.V.}\int_0^{\infty}\int_0^{\infty} \frac{\text{sinc}^2(1+\phi)v e^{-v}}{(e^{v/2}-1)(\phi-v)}dvd\phi
$$
where ##\text{sinc}(x)=\frac{\sin(x)}{x}##. This is my work so far:

Note the inner iterated integral has two singular points: 0 and ##\phi## so I can write:
$$
\begin{align*}
&\text{P.V.}\int_0^{\infty}\int_0^{\infty} \frac{\text{sinc}^2(1+\phi)v e^{-v}}{(e^{v/2}-1)(\phi-v)}dvd\phi\\
&=\int_0^{\infty}\biggr\{\text{P.V}\int_0^{\infty}\frac{\text{sinc}^2(1+\phi)v e^{-v}}{(e^{v/2}-1)(\phi-v)}dv\biggr\} d\phi
\end{align*}
$$
so now, how about I let:
$$
g(\phi)=\text{P.V}\int_0^{\infty}\frac{\text{sinc}^2(1+\phi)v e^{-v}}{(e^{v/2}-1)(\phi-v)}dv
$$
Now, just for starters, consider ##g(5)##:
$$
g(5)=\text{P.V}\int_0^{\infty}\frac{\text{sinc}^2(6)v e^{-v}}{(e^{v/2}-1)(5-v)}dv
$$
with singular points at 0 and 5. Again for starters, how about I just try to numerically integrate g(5) in the principal-valued sense in Mathematica:
Mathematica:
In[40]:= myf2[v_,\[Phi]_]:=(v Exp[-v])/((Exp[v/2]-1)(\[Phi]-v))
NIntegrate[Sinc[6]^2myf2[v,5],{v,0,0,5,\[Infinity]},Method->"PrincipalValue"]

Out[41]= 0.000858798
and supprisingly it at least converges numerically in the principal-valued sense. Next, how about I try to set up a Riemann-sum type rule to numerically integrate ##g(\phi)## over some range say ##0.0001\leq \phi\leq 15##:
Mathematica:
myf2[v_, \[Phi]_] := (v Exp[-v])/((Exp[v/2] - 1) (\[Phi] - v))
sum = 0;
deltaPhi = 1/100;
myDoubleSum = Table[
   sum += (deltaPhi NIntegrate[
       Sinc[1 + thePhi]^2 myf2[v, thePhi], {v, 0, 0,
        thePhi, \[Infinity]}, Method -> "PrincipalValue"]);
   {thePhi, sum},
   {thePhi, 0.0001, 15, deltaPhi}];

And this results in the plot below which seems to be converging at least in this range so it looks like it may converge.




doublepv.jpg
 
Last edited:

Answers and Replies

Suggested for: Does a double principal-value integral exist?

Replies
4
Views
933
Replies
5
Views
966
Replies
4
Views
575
Replies
4
Views
530
Replies
3
Views
563
Replies
2
Views
454
Replies
3
Views
599
Replies
4
Views
555
Top