First of all, one should make a distinction between quantum fields and classical fields: they are different beasts, and although it can sometimes be helpful to switch between them, it is a tricky business which often leads to inconsistencies.
Classical fields are dynamical entities which are defined over spacetime, and often they are coupled to ANOTHER dynamical entity, which is a (set of) particle(s). Usually, classical fields obey some conservation principles, like the conservation of energy, and then it is obvious that static fields shouldn't "radiate away" energy. These conservation laws often follow from specific parts of the dynamics, which also stop you from setting up "paradoxial" situations. For instance, from the Maxwell equations (the dynamics of classical electrodynamics) follows charge conservation. As such, it is impossible, within a field that obeys the Maxwell equations, to have a charge "suddenly appear out of nowhere". If you want to do that, then the Maxwell equations cannot be universally valid, and in that case, there's no guarantee for energy conservation anymore either. What is important to note, again, is that in classical fields, the particles are a separate dynamical entity. They are IN the same spacetime, but particles are not "part of" the fields. They just happen to be defined over the same spacetime.
Quantum fields are different beasts. You can introduce them in different ways, but quantum fields are quantum systems, which have a (Hilbert) state space and so on. The only quantum fields we kind of understand well are free fields, and we apply perturbative couplings between free fields as approximations to "real, interacting" quantum fields. So let us look at free fields first. Free quantum fields can appear in different energy eigenstates (as any quantum system), and it turns out that the ground state is (usually) a unique state, which we call "the vacuum". There are excited states of quantum fields, and we call those excited states: particles ! For the (free) Quantum Electrodynamic field, the excited states are called photons. Or better, we call photons, the differences between successive excited states, and an excited state is a single or many photon state. So photons are to the quantum electrodynamical field what excited orbitals are to the hydrogen atom: they are states of excitation.
Note that this time, particles are not an "outside" dynamical system: they are genuinly part of the dynamical description (in fact, they emerge from it) of the quantum dynamics of free fields.
Electrons, for instance, are states of excitation of the (electron) Dirac field. A state with a single electron is a specific excited state of that field, and a state with 5 electrons and 3 positrons is yet another excited state of that same quantum field.
If we have several fields, they can *couple* dynamically (just as classical mechanical systems can couple). If that happens, we don't know anymore exactly what goes on, but we can look upon it as free fields with a perturbation. That perturbation then manifests itself as "transitions between the excited states" of the free fields, which, in the corresponding particle view, is seen as particles "colliding", "creation", "annihilation" etc...
In fact, it is just excited free field states changing through the "interaction perturbation".
The precise bookkeeping of how these excited free field states change, can be handled surprisingly enough by a set of diagrams which derive from the free field description and the interaction description: the so-called Feynman diagrams. They determine how "incoming" excited states can transform into other, intermediate excited states, and finally to "outgoing" excited states, through a set of precise calculational rules. One calls the particle description of the intermediate excited states: "virtual particles". So on one hand, virtual particles are just a concept in a calculational technique ; on the other hand, they are highly intuitively suggestive. But it would be an error to consider them as a kind of classical particles, for several reasons:
- particles are not independent dynamical entities in quantum field theory, as they were in classical field theory. They are emerging quantum states of the fields themselves.
- in as much as the "particles" of free quantum field theory share some properties with classical particles, this is much less obvious in non-free quantum field theory ; it is only in their asymptotically free states that the ressemblance re-emerges, and that we can talk about "incoming" and "outcoming" particles.
- virtual particles are calculational elements which help us to find out how free quantum fields can be used as an approximation to interacting quantum fields ; at no point they are asymptotically free states themselves. So it is not clear in how much they relate to those free states, and in how much they are just a calculational aid.
- virtual particles have "impossible" dynamical properties if we force them into the picture of a genuine particle, such as imaginary mass.