Hi,(adsbygoogle = window.adsbygoogle || []).push({});

Please bear with me, I've only had the first sort of "pseudo-lecture" in ordinary d.e.'s this past week, and I was doing some reading ahead. It occurred to me that if linear first-order differential equations are those that can be written in the general form:

[tex] \frac{dy}{dx} + P(x)y = Q(x) [/tex]

and if I understood my prof's remark correctly thathomogeneouslinear first-order d.e.'s are those for which [itex] Q(x) = 0 [/itex], then all homogeneous first-order linear differential equations are actuallyseparablebecause:

[tex] \frac{dy}{dx} + P(x)y = 0 [/tex]

[tex] \frac{dy}{dx} = -P(x)y [/tex]

Which can be solved as follows:

[tex] \int{\frac{dy}{y}} = -\int{P(x)dx} [/tex]

^^Looks separable to me. I just wanted to make sure I was getting the basics before I moved on. So is the thread title statement true then? Oh yeah, and I'm guessing that theconverseis not always true right? A separable first-order d.e. is not necessarily a homogeneous linear d.e. right? After all, [itex] \frac{dy}{dx} = \frac{6x^2}{2y + cosy} [/itex] is not linear in [itex] y [/itex] right? But it looks like it could be homogeneous non-linear (if such a thing exists, I don't know???). In that case, would the statement homogeneous = separable be true in the most general sense? Moving on with the original example (I'm just solving while "LaTeXing" to see what comes out) ...

[tex] \ln|y| = -\int{P(x)dx} [/tex]

[tex] |y| = e^{-\int {P(x)dx}} [/tex]

Now, the most general solution for [itex] y [/itex] must include the most general antiderivative, so we'll have a [itex] C [/itex] stuck in there if and when we solve the integral:

[tex] y = \pm e^{-\int {P(x)dx} + C} = \pm e^{-\int {P(x)dx}}e^C = \pm Ae^{-\int {P(x)dx}} [/tex]

Whoah, cool! So in a homogeneous first order d.e. the solution takes the form of some constant [itex] \pm A [/itex] times thereciprocalof the integrating factor [itex] I(x) [/itex]?! Is this always true?

EDIT: Yeah actually I can see why that is. Take the usual statement about the integrating factor:

[tex] (I(x)y)^{\prime} = I(x)Q(x) [/tex]

If [itex] Q(x) = 0 [/itex], then

[tex] (I(x)y)^{\prime} = 0 [/tex]

[tex] I(x)y = \pm A [/tex]

[tex] y = \frac{\pm A}{I(x)} [/tex]

Awesome! I discovered a lot more writing this post than I expected. I hope someone will correct me if I've made any errors.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Does Homogeneous = Separable?

**Physics Forums | Science Articles, Homework Help, Discussion**