Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Does light have a temperature?

  1. Aug 19, 2005 #1
    Does light have a temperature? Is it measureable? Often in photography they talk about color temperature...

    DOES LIGHT ITSELF HAVE A TEMPERATURE?
     
  2. jcsd
  3. Aug 19, 2005 #2

    SpaceTiger

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Sure does. In pure thermodynamic equilibrium, a body will emit a blackbody spectrum, a distribution of light that has a temperature associated with it. For example, we talk about the cosmic microwave background radiation having a temperature of 2.7 K because it has a blackbody spectrum consistent with a body emitting at that temperature.

    The color temperature that you're referring to is the temperature one would have to heat a theoretical blackbody to in order produce that color that you're seeing. Google seems to have several matches on the subject, so I suggest you take a look.
     
    Last edited: Aug 19, 2005
  4. Aug 19, 2005 #3

    samalkhaiat

    User Avatar
    Science Advisor

    Temperature is a statistical concept. it does not apply to elementary particles like electrons or photons(particles of light) or even single atom. temperature of an extended object is directly related to the kinetic energies of its molecules.
    However if "God" presented you with a tea cup filled with light, you can insert a thermometer into that cup and measure the temperature of the light soup. because the thermometer will absorp some light (i.e some energy) its pointer will rise to indicate that gain of energy.
     
  5. Aug 19, 2005 #4

    SpaceTiger

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    This brings to mind another point I forgot to mention. Since photons don't exchange energy with each other in most everyday circumstances, they are seldom in thermodynamic equilibrium with their immediate surroundings, so most light you see in your everyday life is not at a single, well-defined temperature. For example, the light in your room might have contributions from the sun, a light bulb, your body, and the other contents of the room. Each of these things may be an approximate blackbody with a single temperature, but the resulting photon field is nothing close.

    So it's probably better to say that light can have a temperature.
     
  6. Aug 19, 2005 #5
    I think that elecromagnetic radiation and thermal radiation are being mixed up here. A photon can induce a temperature change as you stated in the first post SpaceTiger, but I don't think that it can have an intristic temperature.

    Regards,

    Nenad
     
  7. Aug 19, 2005 #6

    SpaceTiger

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    As samalkhaiat already said, temperature is a statistical quantity, so a single photon, electron, or atom cannot be said to have a temperature. However, a blackbody radiation field (consisting of many photons) does have a well-defined temperature. The distribution of light with frequency follows the usual blackbody formula:

    [tex]B_{\nu}=\frac{2h\nu^3/c^2}{e^{\frac{h\nu}{kT}}-1}[/tex]

    where T is the temperature of the photon field (or emitting blackbody).
     
    Last edited: Aug 19, 2005
  8. Aug 19, 2005 #7
    Very True.
     
  9. Aug 19, 2005 #8

    Andrew Mason

    User Avatar
    Science Advisor
    Homework Helper

    But the question asked whether LIGHT ITSELF had a temperature. We often say that light has a certain temperature, but what we really mean is that a black body would have to have that temperature in order to emit that wavelength of light. But this does not mean that the LIGHT ITSELF has that temperature.

    AM
     
    Last edited: Aug 19, 2005
  10. Aug 19, 2005 #9

    SpaceTiger

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    I feel silly discussing semantics, but in case it wasn't clear what was meant by my above posts:

    - Does a single photon have a temperature?

    No.

    - Can a collection of photons have a temperature?

    Yes.

    - Do all collections of photons have a well-defined temperature?

    No.

    - Does the light we usually see have a well-defined temperature?

    No.


    From the above, you can interpret the question however you like and get the associated answer.
     
    Last edited: Aug 19, 2005
  11. Aug 20, 2005 #10

    Andrew Mason

    User Avatar
    Science Advisor
    Homework Helper

    Hmmm. Although one can associate a temperature with a certain color of light, I think it would require a fundamental change in the definition of temperature for photons to actually have a temperature. Temperature is fundamentally a measure of kinetic energy. Light does not have kinetic energy.

    AM
     
  12. Aug 20, 2005 #11

    Tide

    User Avatar
    Science Advisor
    Homework Helper

    Light does have energy and one can most certainly talk about and define a spread in photon energy about a mean value. In the case of particles, the root mean square of the particle velocity is a measure of the spread in kinetic energy and is related to the temperature.
     
  13. Aug 20, 2005 #12

    SpaceTiger

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Are you saying that the photon isn't a boson or that the "temperature" in the bose-einstein distribution function isn't a real temperature?
     
  14. Aug 20, 2005 #13
    reply to Andrew Mason

    yup , light have temp. , i belive this quote .
    it can be proved two ways.
    1.from the principal of law of conservation of energy , we can say every energy is transformed lastly as a heat energy . we know heat is a reason & temp. is its
    effect. from this theory we can say this.
    2. if we focus through a lense in a paper we wil see the paper will burn. it is proved light have temp.
     
  15. Aug 20, 2005 #14
  16. Aug 20, 2005 #15
    The second link there states that presence of a small a mount of matter is
    essential for a photon gas to reach equilibrium because photons don't
    interact with one another.

    If you only have light, the gas can't have a temperature any more
    than a single photon can..
     
  17. Aug 20, 2005 #16

    Andrew Mason

    User Avatar
    Science Advisor
    Homework Helper

    In the case of freely moving particles, the spread in kinetic energy of the particles is given by the Boltzmann distribution. In the case of thermal radiation, the energies or wavelengths of photons will follow a different distribution curve (Bose-Einstein). One can relate the light wavelength distribution to the Boltzman distribution of the thermal source. But does that give light 'temperature'?

    AM
     
  18. Aug 20, 2005 #17

    Andrew Mason

    User Avatar
    Science Advisor
    Homework Helper

    Neither. The 'temperature' in the Bose-Einstein distribution of blackbody thermal radiation is the temperature of the radiation source. It is not the temperature of the radiation itself. The radiation energy distribution is fundamentally different than the kinetic energy distribution of the molecules in the thermal source.

    AM
     
  19. Aug 20, 2005 #18

    SpaceTiger

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Sorry bro, but I think you're really reaching here. It is just an issue of terminology, but I find your definition unsettling. You're claiming that the fact that photons don't usually interact with one another makes them fundamentally different from other particles to the extent that they can't be given a temperature. To be sure, this prevents them from reaching equilibrium while in isolation, but when put in a system with things with which they can interact, they follow the same statistical distribution as any other boson. Furthermore, a region of space (say, within a star or the interstellar medium), is not said to be in complete thermodynamic equilibrium unless the radiation follows a blackbody distribution with the same temperature as the matter. In fact, if the matter is embedded in a blackbody radiation field much larger than itself (like the CMB), then it will eventually reach the temperature of that field, regardless of whether the matter that "created" the field is still around.

    There are other reasons I find your definition unsatisfying:

    1) It "binds" the radiation field to the matter that created it. Does it really seem reasonable to paramaterize the CMB in terms of a hot gas that no longer exists?
    2) As far as I can tell, radiation fields obey the zeroth law of thermodynamics, the basis for the definition of temperature.
    3) Virtually every expert and textbook on the subject that I know of has described radiation fields as having a temperature.

    We may have to agree to disagree.
     
  20. Aug 20, 2005 #19

    Tide

    User Avatar
    Science Advisor
    Homework Helper

    Andrew

    I said nothing about the details of the distribution except that the temperature is related to the "width" of the distribution.
     
  21. Aug 21, 2005 #20

    Andrew Mason

    User Avatar
    Science Advisor
    Homework Helper

    Well, they may ascribe a temperature to a certain spectrum or a certain discrete wavelength of radiation - but that is just the temperature of the blackbody source that would produce a spectrum that peaked at that wavelength. It is a matter of semantics whether you want to say that the radiation has that temperature. I would say that unless you can define temperature in terms of the radiation itself that is independent of the temperature of the matter to which it is associated, then you can't really say that the radiation itself has temperature.

    To illustrate the problem, would you say that monochromatic radiation from a laser has the same temperature as a blackbody spectrum of radiation that is peaked at the same wavelength?

    AM
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Does light have a temperature?
Loading...