Does the bar symbol go over the functions or over the indices? (tensors)

  • #1
931
56
When dealing with any tensor quantity, when making a coordinate transformation, we should put a bar (or whatever symbol) over the functions or over the indices? For exemple, should the metric coefficients ##g_{\mu \nu}## be written in another coord sys as ##\bar g_{\mu \nu}## or as ##g_{\bar \mu \bar \nu}##?
 

Answers and Replies

  • #2
184
42
I think this is more of a notational preference. There might be a clearer choice depending on the type of problem you’re working, though. Personally, if I’m referring to the same tensor field simply in different coordinates, it usually makes more sense to me to put the bars over the indices.
 
  • Like
Likes kent davidge and Orodruin
  • #3
Orodruin
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Gold Member
16,927
6,735
Personally, if I’m referring to the same tensor field simply in different coordinates, it usually makes more sense to me to put the bars over the indices.
I fully agree. The symbol itself is the field that does not care about coordinates and what actually is basis dependent are the components. Unfortunately, many people dont agree ...
 
  • Like
Likes Pencilvester and kent davidge
  • #4
931
56
I think this is more of a notational preference. There might be a clearer choice depending on the type of problem you’re working, though. Personally, if I’m referring to the same tensor field simply in different coordinates, it usually makes more sense to me to put the bars over the indices.
I fully agree. The symbol itself is the field that does not care about coordinates and what actually is basis dependent are the components. Unfortunately, many people dont agree ...
Thank you. For this to be valid, we should consider the same region of the manifold before and after the parametrization, correct? Because otherwise the domain of the functions would be different, what in turn makes the functions different.
 
  • #5
184
42
Thank you. For this to be valid, we should consider the same region of the manifold before and after the parametrization, correct? Because otherwise the domain of the functions would be different, what in turn makes the functions different.
It sounds like you’re thinking about overlapping charts on a manifold, in which case, yes, you should be looking at where the domains of the coordinate functions overlap. However, for many problems, the issue is not getting from one patch of spacetime to another, it’s what happens simply when we transform the coordinates we’re using (think of almost all problems in SR, where most reasonable choices of coordinates for inertial observers cover the entire manifold).
 
  • Like
Likes kent davidge
  • #6
931
56
It sounds like you’re thinking about overlapping charts on a manifold, in which case, yes, you should be looking at where the domains of the coordinate functions overlap. However, for many problems, the issue is not getting from one patch of spacetime to another, it’s what happens simply when we transform the coordinates we’re using (think of almost all problems in SR, where most reasonable choices of coordinates for inertial observers cover the entire manifold).
Thanks!
 

Related Threads on Does the bar symbol go over the functions or over the indices? (tensors)

  • Last Post
Replies
10
Views
7K
Replies
6
Views
952
  • Last Post
Replies
9
Views
501
Replies
24
Views
4K
  • Last Post
Replies
9
Views
1K
  • Last Post
Replies
5
Views
2K
Replies
2
Views
511
Replies
5
Views
1K
Replies
1
Views
853
Top