- #1

- 202

- 0

**infinite**sum, is the limit of the sum = sum of the limit?

ie.

[tex]

lim_{x \rightarrow a} \sum_{n=0}^\infty f(x,n)= \sum_{n=0}^\infty lim_{x \rightarrow a}f(x,n)

[/tex]

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter Apteronotus
- Start date

- #1

- 202

- 0

ie.

[tex]

lim_{x \rightarrow a} \sum_{n=0}^\infty f(x,n)= \sum_{n=0}^\infty lim_{x \rightarrow a}f(x,n)

[/tex]

- #2

- 258

- 0

[tex]

\sum_{n=0}^{\infty} f(x,n)

[/tex]

converges uniformly. In general, however, no.

- #3

- 202

- 0

Thank you L'Hopital!!!

Share:

- Replies
- 3

- Views
- 2K