- #1

- 402

- 0

[tex] \int_0^* \frac {dz}{z^23Z +2}[/tex]

[tex]=\lim_{t\rightarrow \*} \int_0^* \frac{dz}{z^2+3Z+2}[/tex]

[tex]=\lim_{t\rightarrow \*} \int_0^* \frac{dz}{(z+3/2)^2 -1/4}[/tex]

let u=z+3/2

du=dz

[tex]=\lim_{t\rightarrow \*} \int_0^* \frac{du}{(u)^2 -1/4}[/tex]

[tex] = \frac{1}{2(1/2)}ln|\frac{u-1/2}{u+1/2}[/tex]

[tex] = ln |\frac{z+1}{z+2}| \right]_0^*[/tex]

[tex] = -ln \frac{1}{2}[/tex]

this is one of the first of these im doing so bear with me if its horrible wrong

EDIT:* denotes infinite..PS is there a latex for infinite?

[tex]=\lim_{t\rightarrow \*} \int_0^* \frac{dz}{z^2+3Z+2}[/tex]

[tex]=\lim_{t\rightarrow \*} \int_0^* \frac{dz}{(z+3/2)^2 -1/4}[/tex]

let u=z+3/2

du=dz

[tex]=\lim_{t\rightarrow \*} \int_0^* \frac{du}{(u)^2 -1/4}[/tex]

[tex] = \frac{1}{2(1/2)}ln|\frac{u-1/2}{u+1/2}[/tex]

[tex] = ln |\frac{z+1}{z+2}| \right]_0^*[/tex]

[tex] = -ln \frac{1}{2}[/tex]

this is one of the first of these im doing so bear with me if its horrible wrong

EDIT:* denotes infinite..PS is there a latex for infinite?

Last edited: