- #1

- 1

- 0

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter ques1988
- Start date

- #1

- 1

- 0

- #2

phyzguy

Science Advisor

- 4,799

- 1,744

[tex]\frac{\sqrt2}{2}+\frac{\sqrt2}{2}i, -\frac{\sqrt2}{2}+\frac{\sqrt2}{2}i,\frac{\sqrt2}{2}-\frac{\sqrt2}{2}i,-\frac{\sqrt2}{2}-\frac{\sqrt2}{2}i[/tex]

- #3

- 27

- 0

yup,it is valid

x= +/- sqrt(i)

sqrt(i) = +/- (1+i)/sqrt(2)

so you get four solutions

x= +/- sqrt(i)

sqrt(i) = +/- (1+i)/sqrt(2)

so you get four solutions

- #4

- 64

- 0

[tex]\frac{\sqrt2}{2}+\frac{\sqrt2}{2}i, -\frac{\sqrt2}{2}+\frac{\sqrt2}{2}i,\frac{\sqrt2}{2}-\frac{\sqrt2}{2}i,-\frac{\sqrt2}{2}-\frac{\sqrt2}{2}i[/tex]

We can also write them in exponential form.

[itex]-1 = e^{j180} = e^{j540} = e^{j900} = e^{j1260}[/itex]

Solutions are:

[itex]e^{j\frac{180}{4}} = e^{j45} = +\frac{\sqrt2}{2}+j\frac{\sqrt2}{2}[/itex]

[itex]e^{j\frac{540}{4}} = e^{j135} = -\frac{\sqrt2}{2}+j\frac{\sqrt2}{2}[/itex]

[itex]e^{j\frac{900}{4}} = e^{j225} = e^{-j135} = -\frac{\sqrt2}{2}-j\frac{\sqrt2}{2}[/itex]

[itex]e^{j\frac{1260}{4}} = e^{j315} = e^{-j45} = +\frac{\sqrt2}{2}-j\frac{\sqrt2}{2}[/itex]

Share: