- #1

- 85

- 0

## Homework Statement

I'm writing a lab report on drag on a non-rotating cylinder. The drag coefficient is calculated using the Pressure co-efficient. The problem I'm facing is that my lab states that the pressure on the cylinder can be predicted by [tex]\left(p-p_{0}\right)_{max} \times cos(\theta) [/tex]

## The Attempt at a Solution

The research I've done on the subject leads me to conclude that the pressure on a cylinder can be predicted by [tex]\left(p-p_{0}\right)_{max} \times \left(1-4sin^{2}(\theta)[/tex] instead of the above mentioned equation.

The following is a plot I did in pylab with the experimental plot in blue and the therotical plot in green (using the 2nd equation). The y-axis represents the coeffiecent of pressure while the x-axis is the position from the stagnation point on the cylinder, in degrees.

My question is, am I missing something? Or is my lab wrong on this? I've been literally reading every material I can get my hands on for the past 3 or 4 hours and I'm still terribly confused.

EDIT: The following is the text from my lab notebook which confuses me.

Drag acts in the plane of motion so the pressure acting in this plane on an element at θ degrees to the cylinder is (p-p0)cosθ. The area it acts upon is small and equal to Rδθ for a unit length of the cylinder. The force on the element in the plane of the drag is the pressure multiplied by the area of the element = (p - p0)Rcosθδθ.

Last edited: