Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Dual Representation and anti-particles

  1. Sep 19, 2005 #1
    I am reading ahead for my Group Theory introduction to QFT and I have a question about the dual representation. If the dual representation is the same as the ordinary representation, that is to say the ordinary representation is "real", how do we represent anti-particles in this case? This seems to be the case for SU(2), which is the gauge group for weak interactions.
    Thanks,
    Ryan
     
  2. jcsd
  3. Sep 20, 2005 #2
    Anyone have any ideas? Maybe I posted this in the wrong forum... Or is my question completely non-sensical?
    Cheers,
    Ryan
     
  4. Sep 20, 2005 #3
    Never mind. This is actually a pretty non-sensical question I think. (It is fun having an online conversation with myself) but in case someone else has this crazy question in the future, I will answer with what I think is the correct statement. SU(2) only talks about, say, weak isospin. But to take into account the charge of a particle we would need the group SU(2) X U(1). This group would account for electroweak theory and would allow the leptonic charge to change.
    Cheers,
    Ryan
     
  5. Sep 20, 2005 #4

    CarlB

    User Avatar
    Science Advisor
    Homework Helper

    I'm not sure what you mean by requiring the ordinary representation to be "real". With that caveat, here's a stab:

    If you take a look at [tex]\mathcal{SU}(3)[/tex] and its triplet and dual triplet irreps, you will find that the quantum numbers of the dual are complementary to the quantum numbers of the regular representation. So I'm not really sure what you mean when you say that they are the same. Sure you can rotate one to the other, but the antiparticles carry negated quantum numbers.

    Carl
     
  6. Sep 20, 2005 #5
    SU(3) has a dual, but the dual to SU(2) is equal to the ordinary rep.
     
  7. Sep 20, 2005 #6

    CarlB

    User Avatar
    Science Advisor
    Homework Helper

    I see your question now. So your answer to your own question is that if one wants an antiparticle associated with a particle collection that follows an SU(2) symmetry, then one must use a different symmetry to generate the relationship between the particles and antiparticles?

    Carl
     
  8. Sep 21, 2005 #7

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    By "dual" u mean "contragradient", i see, now. The fundamental and the contragradient representations of [itex] \mbox{SU(2)} [/itex] are not the same, but equivalent. This means there is a similarity transformation connecting the generators of the two representations. But you can't say "they're the same". Think of the Dirac algebra

    [tex] \left[\gamma_{\mu},\gamma_{\nu}]_{+} =2g_{\mu\nu}\hat{1}_{V} [/tex]

    U can't say the Dirac representation is "the same" with the Weyl and the Majorana one.

    Daniel.

    P.S.Terminology is important.:wink:
     
  9. Sep 21, 2005 #8
    Yes. I believe that is the answer to the question. Someone can correct me if I am wrong.
     
  10. Sep 21, 2005 #9
    Of course. Terminology is always very important. But the lecture notes we were given stated things using the terms I used in my original post. Unfortunately I have to go with what is in there mainly. Oh well, a process is learning.
    Cheers,
    Ryan
     
  11. Sep 21, 2005 #10

    George Jones

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Even though the representations are equivalent, the weights, i.e., quantum numbers, for the representations have different signs, and hence the connection between particles and antiparticles.

    Regards,
    George
     
  12. Sep 21, 2005 #11
    Yes but the weights for SU(2) are just opposite in sign, so changeing their sign maps the positive one onto the negative one and vice versa. This doesn't give you 2 new particles, this brings one particle to another in the same representation. That is just the way I understand it though. I believe this is exactly why a complete theory of weak interactions must incorporate electromagnetic interactions thus giving us a SU(2) X U(1) gauge group. (this may not be WHY EM must be incorporated into Weak interactions, but it is part of the reason I think.)
     
  13. Oct 23, 2005 #12

    samalkhaiat

    User Avatar
    Science Advisor

     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Dual Representation and anti-particles
Loading...