Hi, I am having difficulty understanding and applying Duhamel's principle. (I'm not great with math but somehow I found myself in this graduate math class of death)...(adsbygoogle = window.adsbygoogle || []).push({});

From my text its stated that

Ux1x1+Ux2x2+...+Uxnxn - Utt = f(x,t) (for x an element of all real), t>0

u(x,0)=0, ut(x,0) = 0 (for x an element of all real)

Or in words, the laplacian of u minus the second time derivative of u = a function of x and t.

The initial conditions are zero displacement and zero velocity.

Next we can assume some v(x,t;tow) is the solution of a homogeneous wave eqn

vx1x1+vx2x2+...+vxnxn-vtt = 0 (for x an element of all real), t>tow

v(x,tow;tow) = 0, vt(x,tow;tow) = -f(x,tow)

Or in words, the homogeneous wave eqn for t larger than some time tow, with the initial conditions of this equation being zero position and -f(x,tow) velocity.

How on earth does this work?

I know the solution is

u(x,t) = int( v(x,t;tow)) dtow from zero to t, but i have no idea how i can derive this.

I think i lack a major understanding of this principle. Can someone explain to me in simple terms what this is saying?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Duhamel's principle

**Physics Forums | Science Articles, Homework Help, Discussion**