Dx before the f(x) in integrals

In summary: I started doing integrals the other way round. I don't know why everyone else started doing it that way, but it's the way I do it and that's that.
  • #1
martinbn
Science Advisor
3,658
1,857
Why do physicists like to write ##\int dx f(x)## instead of ##\int f(x) dx##? And also when did that start?
 
  • Like
Likes Demystifier
Physics news on Phys.org
  • #2
iMmtz.gif


I have never seen that before.

Found a quick answer (with another linked question and answer):

https://math.stackexchange.com/ques...in-usage-for-dx-before-or-after-the-integrand

Although it doesn't say when it started.
 

Attachments

  • iMmtz.gif
    iMmtz.gif
    621.2 KB · Views: 898
  • #3
martinbn said:
Why do physicists like to write ##\int dx f(x)## instead of ##\int f(x) dx##? And also when did that start?
It's a matter of taste. E.g. if we have especially long integrands with multiple variables and constants, it can be very helpful to denote the integration variable first. My guess is, that some physicists started with it for exactly this reason: write down the "unnecessary" first and concentrate on the essential part.
 
  • Like
Likes Demystifier and symbolipoint
  • #4
martinbn said:
Why do physicists like to write ##\int dx f(x)## instead of ##\int f(x) dx##? And also when did that start?

In QM Dirac notation, it is a more natural extension of the representation of vector/state for a countable basis, ##|n \rangle##:

$$|\alpha \rangle = \sum_n |n \rangle \langle n | \alpha \rangle $$
For a continuous basis, ##|x \rangle##, this becomes:
$$|\alpha \rangle = \int dx |x \rangle \langle x| \alpha \rangle $$
Where we have the identity:
$$\sum_n |n \rangle \langle n | = I$$
and
$$\int dx |x \rangle \langle x| = I $$
 
  • Like
Likes Stephen Tashi and Demystifier
  • #5
martinbn said:
Why do physicists like to write ##\int dx f(x)## instead of ##\int f(x) dx##?

Says who? I'm a physicist, and I don't write it like that most of the time. I've seen mathematicians wrote dx first many times.

And why does this even merit a question? Isn't this no different than asking why someone prefers the color yellow instead of blue?

Zz.
 
  • #6
PeroK said:
In QM Dirac notation, it is a more natural extension of the representation of vector/state for a countable basis, ##|n \rangle##:

$$|\alpha \rangle = \sum_n |n \rangle \langle n | \alpha \rangle $$
Yes, this is the same. Mathematicians wouldn't put basis vectors first and the numbers second. It would be ##\sum a_i\vec{e}_i##, not ##\sum\vec{e}_i a_i##.
 
  • Like
Likes Demystifier
  • #7
ZapperZ said:
Says who? I'm a physicist, and I don't write it like that most of the time. I've seen mathematicians wrote dx first many times.
Ok, I thought it was obvious that I meant some physicists not all. But you are right I was sloppy.
 
  • #8
ZapperZ said:
And why does this even merit a question? Isn't this no different than asking why someone prefers the color yellow instead of blue?
Well, at some point someone must have started doing it. I might be wrong but I think the other notation have been around for a while before some, not all, started using the differential first notation. So there must have been a reason.

Also I have never seen seen it in introductory calculus/analysis textbooks. My guess is that physicists are exposed to it later on. It is puzzling to me that it is used.
 
  • #9
martinbn said:
Well, at some point someone must have started doing it. I might be wrong but I think the other notation have been around for a while before some, not all, started using the differential first notation. So there must have been a reason.

Also I have never seen seen it in introductory calculus/analysis textbooks. My guess is that physicists are exposed to it later on. It is puzzling to me that it is used.

Again, why is this "puzzling"? Unless you think that these things do not commute, does it matter that I write the product of A and B as BA instead of AB?

It is also a matter of typesetting style. Maybe some publishers or journals have a standard where the integration variables are written first. This is often useful if the integrand itself is a long, complicated function.

Once again, isn't this a matter of personal preference? Should I need to conform to liking the same color as you do?

Zz.
 
  • Like
Likes fresh_42
  • #10
martinbn said:
Yes, this is the same. Mathematicians wouldn't put basis vectors first and the numbers second. It would be ##\sum a_i\vec{e}_i##, not ##\sum\vec{e}_i a_i##.

Yes, exactly, and the Dirac notation doesn't quite work the mathematician's way round! It's the same with the inner product being linear in the second argument, rather than the first.
 
  • #11
PeroK said:
Yes, exactly, and the Dirac notation doesn't quite work the mathematician's way round! It's the same with the inner product being linear in the second argument, rather than the first.
Yes, and it is convenient that way. For the integral it is not, at least not any more. Are you saying that it is because of Dirac's notations? If you've been writing your integrals one way for a while there has to be a good reason to change later on, no?
 
  • #12
martinbn said:
Yes, and it is convenient that way. For the integral it is not, at least not any more. Are you saying that it is because of Dirac's notations? If you've been writing your integrals one way for a while there has to be a good reason to change later on, no?

All I know is that I started doing the integrals the other way round when I was learning QM Dirac notation. I've no idea whether Dirac started it. That's the only time I do it that way. Any other time I put the ##dx## at the end.

It's the same with vectors, it's only in QM that I write things back to front.
 
  • #13
I have given it a little more thought. Here is a speculation. For some people, at least for me, the notation ##\int \dots dx## serves as parentheses to enclose the expression to be integrated, so it is natural to put it that way. Also if one does more abstract integration, or integration on groups it would seem awkward otherwise. Of course just ##\int\dots## would be fine. For other people it may be more important, at least in some cases, or more natural to think of the integral as an operator. It takes a function and it produces something else, a number, a function so on. Then it is more natural to write it as an operator ##\int dx\dots## acting on functions.
 
  • Like
Likes Demystifier
  • #14
ZapperZ said:
Says who? I'm a physicist, and I don't write it like that most of the time. I've seen mathematicians wrote dx first many times.

And why does this even merit a question? Isn't this no different than asking why someone prefers the color yellow instead of blue?

Zz.

Of course it "merits" a question. It elicited several sensible answers.
 
  • Like
Likes symbolipoint
  • #15
By analogy with ##\sum_n f_n## I would propose to use a third notation
$$\int_x f(x)$$
 
  • Like
Likes PeroK
  • #16
Demystifier said:
By analogy with ##\sum_n f_n## I would propose to use a third notation
$$\int_x f(x)$$
Makes sense, and before there will be complaints about the location for the boundaries:
$$\int_{x \in (a,\infty]} f(x)$$
 
  • #17
fresh_42 said:
Makes sense, and before there will be complaints about the location for the boundaries:
$$\int_{x \in (a,\infty]} f(x)$$
To make the analogy with sums complete, how about
$$\int_{x =a}^{b} f(x) \;\;?$$
 
  • #18
martinbn said:
Why do physicists like to write ##\int dx f(x)## instead of ##\int f(x) dx##? And also when did that start?
If you have a double integral, then the notation
$$\int_{a}^{b}\int_{c}^{d}f(x,y)dxdy$$
is ambiguous, because it is not clear whether ##x\in[a,b]## or ##x\in[c,d]##. With notation
$$\int_{a}^{b}dx\int_{c}^{d}dy \,f(x,y)$$
there is no risk for such a confusion.
 
  • Like
Likes jedishrfu and nrqed
  • #19
Demystifier said:
To make the analogy with sums complete, how about
$$\int_{x =a}^{b} f(x) \;\;?$$
I guess, because I like to write the sums as well as sum over instead of from to. :wink:

And if the integration order is arbitrary, we can even write
$$
\int_{x_1}^{x_2}\, \int_{y_1}^{y_2} \, \int_{z_1}^{z_2} \,f(x,y,z) = \iiint_\stackrel{\stackrel{x \in [x_1,x_2]}{y \in [y_1,y_2]}}{\stackrel{z \in [z_1,z_2]}{}}\,f(x,y,z) = \int_{(x,y,z)\in [x_1,x_2]\times [y_1,y_2] \times [z_1,z_2]}\,f(x,y,z)
$$
in which case the term volume gets a complete new feeling!
 
  • Like
Likes Demystifier
  • #20
Demystifier said:
By analogy with ##\sum_n f_n## I would propose to use a third notation
$$\int_x f(x)$$
Let me also note that Schiff in his quantum mechanics textbook uses the same notation
$${\large\sf S}_k f_k$$
for both sums and integrals.
 
  • #21
fresh_42 said:

And if the integration order is arbitrary, we can even write
$$
\int_{x_1}^{x_2}\, \int_{y_1}^{y_2} \, \int_{z_1}^{z_2} \,f(x,y,z) = \iiint_\stackrel{\stackrel{x \in [x_1,x_2]}{y \in [y_1,y_2]}}{\stackrel{z \in [z_1,z_2]}{}}\,f(x,y,z) = \int_{(x,y,z)\in [x_1,x_2]\times [y_1,y_2] \times [z_1,z_2]}\,f(x,y,z)
$$
in which case the term volume gets a complete new feeling!
Isn't that a proof that physicist's notation is better? :wink:
 
  • #22
Demystifier said:
Isn't that a proof that physicist's notation is better? :wink:
I might have agreed, if it wouldn't have happened, that I read this thread here in parallel :cool:
 
  • #23
fresh_42 said:
I might have agreed, if it wouldn't have happened, that I read this thread here in parallel :cool:
Well, in this thread physicists are silly, but this thread is not about notation. :smile:
 
  • #24
There are two major disadvantages with your proposal:
  • You cannot take away a loved infinitesimal from physicists.
  • Half of them would immediately lose the ability to perform a correct substitution.
:biggrin:
 
  • Like
Likes Demystifier
  • #25
The greatest notation master among physicists is DeWitt, who writes e.g.
$$\int d^4x \sum_{\mu=0}^3 j_{\mu}(x)A^{\mu}(x)$$
simply as
$$j_kA^k$$
 
  • Like
Likes fresh_42
  • #26
fresh_42 said:
  • You cannot take away a loved infinitesimal from physicists.
I would propose that all physicists should learn non-standard analysis, just for the sake of replying to pretentious mathematicians who mock physicists for using infinitesimals. :-p

fresh_42 said:
  • Half of them would immediately lose the ability to perform a correct substitution.
Physicists don't do any substitutions anyway. They solve integrals either by looking into a comprehensive math handbook such as Bronstein et al (especially if they are old enough), or put it into Mathematica. :wink:
 
  • #27
martinbn said:
Why do physicists like to write ##\int dx f(x)## instead of ##\int f(x) dx##? And also when did that start?
Well, I have rarely seen multiple integrals in physics written with the ##d^nx## (or whatever variable) written at the far end, it is always written right next to the integral symbol. Therefore it is logical to use the same notation when there is a single integration, no?
 
  • #28
nrqed said:
Well, I have rarely seen multiple integrals in physics written with the ##d^nx## (or whatever variable) written at the far end, it is always written right next to the integral symbol. Therefore it is logical to use the same notation when there is a single integration, no?
Oh, the question was about integrals in general, not just single integrals.
 
  • #29
Demystifier said:
By analogy with ##\sum_n f_n## I would propose to use a third notation
$$\int_x f(x)$$
The usual mathematical notation is ##\int_Sf## or ##\int_Sfd\mu## if you want to emphasize the measure.
 
  • #30
Demystifier said:
If you have a double integral, then the notation
$$\int_{a}^{b}\int_{c}^{d}f(x,y)dxdy$$
is ambiguous, because it is not clear whether ##x\in[a,b]## or ##x\in[c,d]##. With notation
$$\int_{a}^{b}dx\int_{c}^{d}dy \,f(x,y)$$
there is no risk for such a confusion.
The first notation is not ambiguous unless the text is very poorly written. It is used in many math books and i have never seen anyone, including tones of american undergrad students, be confused by it. Of course the way you've written it ##x\in[c,d]##. The integral sign ##\int## and the differential ##dx## are just like parentheses.The second notation looks very strange to me because surely ##\int_a^bdx=b-a##.
 
  • #31
martinbn said:
The second notation looks very strange to me because surely ##\int_a^bdx=b-a##.
How about
$$\sum_{n=1}^{10}\sum_{m=1}^{10}f_{nm}\; ?$$
Does it look strange to you because surely ##\sum_{n=1}^{10}=10##?
 
  • Like
Likes nrqed and weirdoguy
  • #32
Demystifier said:
How about
$$\sum_{n=1}^{10}\sum_{m=1}^{10}f_{nm}\; ?$$
Does it look strange to you because surely ##\sum_{n=1}^{10}=10##?
There is no closing bracket here the ##\int\dots dx## is analogous to ##(\dots)##. To be analogous it needs to be like $$\left(\sum_{m=1}^{10}\right)f_m.$$
A sum is an integral with respect to the counting measure and usually the measure is not explicit in the notation. Strictly the sum $$\sum_{m=1}^{10}f_m$$ is $$\int_{\{1,\dots, 10\}}f(m)dm$$ or if you prefer a different notation for the integral $$\sum_{m=1}^{10}f_mdm.$$ Then of course you could think that $$\sum_{m=1}^{10}dmf_m = 10f_m.$$
 
  • #33
By the way, this ##\int(x+1)dx## means integrate the function ##x+1## and you are comfortable to write it as ##\int dx(x+1)##.

What about ##(x+1)^3##? It means cube the function ##x+1##, do you ever write it as ##()^3(x+1)## or as ##{}^3 (x+1)##?
 
  • #34
martinbn said:
By the way, this ##\int(x+1)dx## means integrate the function ##x+1## and you are comfortable to write it as ##\int dx(x+1)##.

What about ##(x+1)^3##? It means cube the function ##x+1##, do you ever write it as ##()^3(x+1)## or as ##{}^3 (x+1)##?
You view ##dx## as the right bracket, so for you it must be on the right. I view ##dx## as an infinitesimal multiplied with ##f(x)##, so, since multplication is commutative, we have ##dx \,f(x)=f(x)dx##.

For instance, if ##v(t)## is time-dependent velocity, the infinitesimal path is
$$dx=v(t)dt=dt\,v(t)$$
so
$$x=\int dx=\int v(t)dt=\int dt\,v(t)$$
 
  • Like
Likes dlgoff, nrqed and weirdoguy
  • #35
Demystifier said:
You view ##dx## as the right bracket, so for you it must be on the right. I view ##dx## as an infinitesimal multiplied with ##f(x)##, so, since multplication is commutative, we have ##dx \,f(x)=f(x)dx##.
This was already pointed out, but it doesn't explain the choice. You say they are the same, but in some cases you prefer ##dxf(x)##. I am simply curious why. I guess you wouldn't write that way differential forms? How about integrals not in the sense of Riemann? There the infinitesimals that commute is not very meaningful.
 

Similar threads

  • General Math
Replies
20
Views
342
  • Advanced Physics Homework Help
Replies
0
Views
217
  • Calculus and Beyond Homework Help
Replies
3
Views
329
Replies
2
Views
907
  • Calculus
Replies
6
Views
1K
Replies
31
Views
889
Replies
4
Views
337
Replies
3
Views
1K
  • Calculus
Replies
25
Views
1K
Back
Top