1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Dynamics Question with Rotational Axis Theorem

  1. Feb 5, 2008 #1
    1. The problem statement, all variables and given/known data
    A cyclist rides around a circular track (R= 30m) such that the point of contact of the wheel on the track moves at a constant speed of 10m/s. The bicycle is banked at 15 degrees inward from the vertical. Find the acceleration of a tack in the tire (.4m radius) as it passed through the highest point of its path. Use cylindrical unit vectors in expressing the answer


    2. Relevant equations

    acceleration = [tex]\ddot{P}[/tex] + [tex]\alpha[/tex] x P + 2 [tex]\omega[/tex] x [tex]\dot{P}[/tex] + [tex]\omega[/tex] x ([tex]\omega[/tex] x P)

    Where the acceleration of the tack = acceleration of tack with respect to the second frame (the point of contact of the wheel) + angular acceleration cross product with vector from center of circular track to tack + 2 * angular velocity cross product with velocity of the tack with respect to the point of contact of wheel + [tex]\omega[/tex] x ([tex]\omega[/tex] x P)


    3. The attempt at a solution

    I know this problem is a matter of finding all the unknowns. I have found [tex]\omega[/tex] and angular acceleration.

    I think I can also find OP (we will call O the center of the track, so this is the vector to the tack).

    How do you find the velocity and acceleration of the tack with respect to the point of contact of the wheel on track?
     
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you help with the solution or looking for help too?



Similar Discussions: Dynamics Question with Rotational Axis Theorem
  1. Rotational motion Help (Replies: 0)

  2. Object dynamics (Replies: 0)

  3. Isospin Rotation (Replies: 0)

Loading...