1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

∇E = 0 in an Ohmic, 2d Hall conductor with constant B?

  1. Apr 30, 2013 #1
    I've been trying to figure this out for long now but unfortunally, I'm not able to prove that ∇E = 0 in an Ohmic, 2d Hall conductor E = Rj + v×B with B = const (and orthogonal to j).

    There is quite a bit of subtlety involved in how to interpret v in that sort of ad-hoc generalization of Ohm's law, and I'm not 100% sure I got that right. If we define ρ by j := ρv and assume a static background-charge ρ' so that ∇E = (ρ' + ρ)/ε I end up at

    ∇E = -1/ρ²(B×j + B²/(ρR)j)·∇ρ

    from Ohm's relation. However, I don't see how that would prove that ∇E = 0 given that this PDE appears to have nontrivial solutions for j's which satisfy ∇j = 0.

    Any ideas would be greatly appreciated.

    Edit: I just thought of something: Perhaps this depends on assumptions concerning the carriers of charge. In particular that the mobile charges are strictly of one sign and thus ρ > 0! Then it could possibly be shown that the PDE cannot be satisfied. Investigating...
    Last edited: Apr 30, 2013
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted