Eigenfunctions & Eigenvalues

  • Thread starter eit32
  • Start date
  • #1
21
0
a) Consider a linear operator L with 2 different eigenvalues a1 and a2, with their corresponding eigenfunction f1 and f2. Is f1 + f2 also an eigenfunction of L? If so, what eigenvalue of L does it correspond to? If not, why not?

b) Answer the same question as in part (a) but for the difference of the 2 functions;
f1-f2.
 

Answers and Replies

  • #2
1,838
7
a) Consider a linear operator L with 2 different eigenvalues a1 and a2, with their corresponding eigenfunction f1 and f2. Is f1 + f2 also an eigenfunction of L? If so, what eigenvalue of L does it correspond to? If not, why not?

b) Answer the same question as in part (a) but for the difference of the 2 functions;
f1-f2.
Let's see:

L(f1 + f2) = L(f1) + L(f2) (because L is linear)

= a1 f1 + a2 f2

If f1 + f2 is an eigenfunction then we must have:

L(f1 + f2) = b (f1 + f2)

for some eigenvalue b. This means that:

a1 f1 + a2 f2 = b f1 + b f2 ------>

(a1 - b) f1 + (a2 - b) f2 = 0

which means that f1 and f2 are proportional to each other. However, that is impossible because then the iegenvalues a1 and a2 have to bethe same. So, we arrive at a contradiction and f1 + f2 cannot be an eigenfunction of L.

Part b) minus f2 is also an eigenfunction with eigenvalue a2. So, the result of a) also applies in this case.
 

Related Threads on Eigenfunctions & Eigenvalues

  • Last Post
Replies
1
Views
2K
Replies
10
Views
2K
Replies
5
Views
670
Replies
9
Views
6K
Replies
2
Views
2K
Replies
2
Views
7K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
1
Views
10K
Replies
3
Views
626
Top