(adsbygoogle = window.adsbygoogle || []).push({}); Theorem:Let A be in [tex]M_n_x_n(F)[/tex]. Then a scalar [tex]\lambda[/tex] is an eigenvalue of A if and only if [tex]det(A - \lambda I_n) = 0[/tex].

Proof:A scalar lambda is an eigenvalue of A if and only if there exists a nonzero vector v in F^n such that lambda*v, that is (A - \lambda I_n)(v) = 0. By theorem 2.5, this is true if and only if A - \lambda I_n is not invertible (since it's not 1-1 or onto). However, this result is equivalent to the statement that det(A - \lambda I_n) = 0."

Question:Can someone please explain to me how something not being invertible implies that the determinant of such a "thing" is equal to 0?? In particular "By theorem 2.5, this is true if and only if A - \lambda I_n is not invertible (since it's not 1-1 or onto). However, this result is equivalent to the statement that det(A - \lambda I_n) = 0."

Theorem 2.5:Let T be a linear transformation T: V-->W where V and W are vector spaces of equal finite-dimension. Then T is 1-1 <==> T is onto <==> rank(T) = dim(V).

Thanks a lot,

JL

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Eigenvalue theorem

Loading...

Similar Threads for Eigenvalue theorem |
---|

A Eigenvalues and matrix entries |

A Eigenvalue Problem and the Calculus of Variations |

I Eigenvalues of Circulant matrices |

I Eigenvalues of block matrices |

A Numerically Calculating Eigenvalues |

**Physics Forums | Science Articles, Homework Help, Discussion**