1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Eigenvector is zero?

  1. Oct 10, 2011 #1
    A = [0 0]
    [1 -3]

    (2 x 2 matrix, bad formatting)

    I need to find the eigenvector for lambda1 and lambda2. I figured out lambda1 = 0 and lambda2 = -3. For lambda1 the eigenvector works fine, but for lambda2 I get it as v = (0,0), which is not possible. Any ideas?
     
  2. jcsd
  3. Oct 11, 2011 #2

    Fredrik

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    This is a textbook-style question, so it should be in the homework forum. I will ask the moderators to move it there, so don't worry about that, but next time you have a similar question, post it there.

    You also need to show us what you did to find the eigenvectors. We're not going to do the problem for you, but we will tell you where your mistakes are, and give you hints about what to do differently.
     
  4. Oct 11, 2011 #3

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    Yes, -3 is an eigenvalue. An eigenvector must satisfy
    [tex]\begin{bmatrix}0 & 0 \\ 1 & -3\end{bmatrix}\begin{bmatrix}x \\ y\end{bmatrix}= \begin{bmatrix}0 \\ x- 3y\end{bmatrix}= \begin{bmatrix}-3x \\ -3y\end{bmatrix}[/tex]

    That is, we must have 0= -3x and x- 3y= -3y. From the first equation, obviously, x= 0 but then the second equation is -3y= -3y which is satisfied for any y, not just 0. (The set of all eigenvectors for a given eigenvalue is a subspace.)
     
    Last edited: Oct 11, 2011
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Eigenvector is zero?
  1. Zero eigenvector? (Replies: 2)

  2. Eigenvector sign (Replies: 2)

  3. Eigenvector proof (Replies: 4)

  4. Eigenvector Woes (Replies: 3)

Loading...