Einstein Field Equations Locations

  • Thread starter meteor
  • Start date
916
0
Looking for Einstein Field Equations, in certain places put that they are 10 and in other places put that they are 16. Which is the correct number?
 
916
0
Last edited by a moderator:
916
0
BTW, I would like to give a look to them, but in all the webs appear in compact form. Does exist any web where I can find the 16 EFE?
 

instanton

No. It is 10. Field eqn is

Einstein Tensor = Energy-Momentum tensor

Both tensors are symmetric. In 4 dimension symmetric matrices has 10 independent components. Indeed, among these 10 eqns. only 6 of them has dynamical information. The other 4 is constraints on initial data.

Instanton
 

marcus

Science Advisor
Gold Member
Dearly Missed
24,713
783
Originally posted by Zefram
16. Look at http://www.etsu.edu/physics/plntrm/relat/general.htm if you're not sure what's going in that one). About 3/4 of the way down they get to the field equations.
the page cited is from the East Tennessee State University
http://www.etsu.edu/physics/

and the specific page cited is
http://www.etsu.edu/physics/plntrm/relat/general.htm

the form of the Einstein equation cited on this page is "R=0" (with mu, nu subscripts which I dont want to have to write) and this is not the version that one usually sees

Usually one sees it arranged this way:
G = 8pi T (with mu, nu subscripts)

this is the form shown in the U. Winnipeg page cited by meteor,
where they say 10 equations.

Probably instanton represents the majority view (10 eqs.)
namely what shows up at meteor's winnipeg site

http://scholar.uwinnipeg.ca/courses...d-Equations.htm [Broken]
 
Last edited by a moderator:
916
0
No. It is 10. Field eqn is

Einstein Tensor = Energy-Momentum tensor
Sure?I have seen that the formula is
Einstein tensor=k*Energy-Momentum tensor
being k a constant. There is no agreement in what is the value of this constant, 8*pi or 8*pi*G. Anybody knows?
Is the Einstein tensor a variant or a contravariant tensor?
 

instanton

First, for Marcus.

R = 0 is a special case of Einstein eqn, which is G_a_b = 8* pi*G* T_a_b. (here G is a Newton's gravitational constant. The factor 8*pi* G is for matcing Newtonian theory of gravity for slow motion - or weak field limit.)

G_a_b = R_a_b - (1/2)*(g_a_b)*R where g_a_b is a metric tensor, R_a_b is a Ricci tensor, and R is a Ricci scalar. If you contract G_a_b you will get -R in 4 dimensional spacetime. R = 0 is true when T = 0, usually for vacuum spacetime.

For meteor,
I've already answer to your first question. Einstein tensor is usually defined as a second rank covariant tensor.

Instanton
 
916
0
I've already answer to your first question. Einstein tensor is usually defined as a second rank covariant tensor.
I trust in your word, but believe me that there are certain pages where it appears like a contravariant tensor:
http://people.hofstra.edu/faculty/Stefan_Waner/diff_geom/Sec10.html [Broken]
www.pa.uky.edu/~cvj/as500_lec17/as500_lec17.html[/URL]

or like a mixed tensor:
[PLAIN]http://folk.uio.no/kkarlsen/docu/gr1/node22.html [Broken]

I suppose that the Ricci tensor and the metric tensor are covariant tensors too
 
Last edited by a moderator:

Tom Mattson

Staff Emeritus
Science Advisor
Gold Member
5,475
20
Originally posted by meteor
I trust in your word, but believe me that there are certain pages where it appears like a contravariant tensor:
You can always convert from covariant-->contravariant by using the metric tensor.

Aμν=gμσgντAστ
 

chroot

Staff Emeritus
Science Advisor
Gold Member
10,166
34
The answer is 10.

There are, of course, 16 equations in any 4x4 tensor equation. 6 of them disappear when you impose symmetry, and there are thus only 10 unique equations.

meteor, the reason the proportionality constant is either 8 pi G or 8 pi in the Einstein equation is simply because some people choose to work in natural units (G = 1) while others do not.

- Warren
 
916
0
In the EFE, in the metric tensor, you have to put the tensor of the metric that you are using? For example if you are using the Minkowski metric you have to put the Minkowski metric tensor, or if you are using the euclidean metric, you have to put the euclidean metric tensor?
another question: how to multiply a tensor with an scalar? Exists any web that explain this?
 

instanton

Originally posted by meteor
In the EFE, in the metric tensor, you have to put the tensor of the metric that you are using? For example if you are using the Minkowski metric you have to put the Minkowski metric tensor, or if you are using the euclidean metric, you have to put the euclidean metric tensor?
another question: how to multiply a tensor with an scalar? Exists any web that explain this?
Einstein equation is 10 coupled non-linear second order partial diffrential equation of metric components. So, for given boundary condition and matter distribution you are solving for metric. Of course there are subtleties. To being able to define energy-momentum tensor of matter we need information on background metric. So, usually you fix backround metric and matter distribution, then perturbatively calculate it's solution. Of course there are few examples of exact solutions, but they are usually rare.

Multiplyng tensor with scalar is exactly like multiplying vector with scalar, if that is what you are asking.

Instanton
 

Related Threads for: Einstein Field Equations Locations

Replies
4
Views
833
  • Posted
Replies
6
Views
6K
Replies
6
Views
3K
Replies
4
Views
630
  • Posted
Replies
1
Views
6K
Replies
0
Views
1K
Replies
2
Views
1K
Replies
3
Views
644

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top