(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Blocks A (mass 3.50 kg) and B (mass 10.00 kg) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is moving toward it at 9.00 m/s. The blocks are equipped with ideal spring bumpers. The collision is head-on, so all motion before and after the collision is along a straight line. Let +x be the direction of the initial motion of A.

Find the maximum energy stored in the spring bumpers and the velocity of each block at the time of the collision.

2. Relevant equations

K = 0.5mv^{2}

W_{net}= K_{f}- K_{i}

3. The attempt at a solution

Since the block A is the only block in motion wouldn't the elastic potential energy be equal to the kinetic energy? I tired using 0.5m(v)^2 and setting that equal to the Kinetic energy, but i didn't get the right answer (i got 141.75).

As far as solving for the velocity of blocks A and B, i'm not sure how to go about it. i tried using V_{af}= [(3.5-10.0) / 13.5] * 9.00 = 4.3 but this is the velocity of block A right after the collision not during (answer to another part of the question, but it doesn't help me with the first part).

Any help on this would be greatly appreciated. thanks guys.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Elastic Collision problem

**Physics Forums | Science Articles, Homework Help, Discussion**