1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Electric Field Above Helix

  1. Sep 15, 2012 #1
    1. The problem statement, all variables and given/known data
    1hnXm.jpg
    A charge Q is uniformly distributed with linear density λ over a helix parameterized as [itex]\vec{r}=acos(\theta)\hat{x}+asin(\theta)\hat{y}+ \frac{ h\theta}{2 \pi}\hat{z}[/itex], where a and h are positive constants, and 0<∏<2∏.

    a) Find the charge Q
    b) Find the electric field on the z-axis at a distance d>h.


    2. Relevant equations
    [itex]\vec{r'}[/itex]=vector to charge element
    [itex]\vec{r}[/itex]=vector to test charge

    [itex]\vec{E}=\frac{1}{4\pi\epsilon_{O}}\int\frac{(\vec{r}-\vec{r'})}{\left\|\vec{r}-\vec{r'}\right\|^{3}}dq[/itex]

    3. The attempt at a solution

    I think I got part a, it's simply the line integral [itex]\int dq=\int\lambda dl=\lambda\int_{0}^{2\pi}\sqrt{a^{2}+\frac{h^{2}}{(2\pi)^{2}}}d \theta =\lambda 2 \pi \sqrt{a^{2}+\frac{h^{2}}{(2\pi)^{2}}} [/itex]

    Now part b is the hard one for me. So I defined r' to be the same thing as the parameterized helix:
    [itex]\vec{r'}=acos(\theta)\hat{x}+asin(\theta)\hat{y}+ \frac{ h\theta}{2 \pi}\hat{z}[/itex]
    and the vector to the point charge as [itex]\vec{r}=d \hat{z}[/itex]

    So [itex]\vec{r}-\vec{r'}=-acos(\theta)\hat{x}+-asin(\theta)\hat{y}+ (d-\frac{ h\theta}{2 \pi})\hat{z}[/itex]
    And [itex]\left\|\vec{r}-\vec{r'}\right\|=\sqrt{a^{2}+(d-\frac{ h\theta}{2 \pi})^{2}}[/itex]

    And the integral will be:

    [itex]\vec{E}=\frac{\lambda}{4\pi\epsilon_{O}}\int\frac{(\vec{r}-\vec{r'})}{\left\|\vec{r}-\vec{r'}\right\|^{3}}dl=\frac{\lambda}{4 \pi \epsilon_{O}}\int_{0}^{2\pi}\frac{-acos(\theta)\hat{x}+-asin(\theta)\hat{y}+ (d-\frac{ h\theta}{2 \pi})\hat{z}}{(a^{2}+(d-\frac{ h\theta}{2 \pi})^{2})^{\frac{3}{2}}}d \theta[/itex]

    Now, as far as I know, this integral isn't solvable (I've tried separating it into its vector components and solving, but a trig function over a radical isn't exactly a pretty thing to solve. So my first assumption is that I somehow set it up incorrectly.
     
    Last edited: Sep 15, 2012
  2. jcsd
  3. Sep 16, 2012 #2

    vela

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Education Advisor

    Your work looks fine, but I agree the integral is unpleasant. Instead, I'd try finding the electric potential. That integral I'd think would be a lot nicer (not that I worked it out). Then take the gradient of the potential to find the field.

    EDIT: Never mind. Either way, it looks to be very painful.
     
    Last edited: Sep 16, 2012
  4. Sep 16, 2012 #3

    TSny

    User Avatar
    Homework Helper
    Gold Member

    Everything you did looks good to me. I also don't see how to do the integrals for the x and y components of the field. The z-component is not bad. [EDIT: I see that vela posted while I was still writing.]
     
  5. Sep 16, 2012 #4

    TSny

    User Avatar
    Homework Helper
    Gold Member

    The problem I see with this approach is that you would need to find the potential as a function of x, y and z in the neighborhood of the z axis (so that you can take the gradient). I don't think the integral for the potential would be very nice for points not on the z axis. But maybe I'm overlooking something.
     
  6. Sep 16, 2012 #5

    vela

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Education Advisor

    No, you're right. I took a look at that approach more closely, and I don't see a way to do this problem either.
     
  7. Sep 16, 2012 #6

    TSny

    User Avatar
    Homework Helper
    Gold Member

    One minor thing, I think that the [itex] dl [/itex] in the first integral will bring in a constant factor of [itex]\sqrt{a^{2}+\frac{h^{2}}{(2\pi)^{2}}} [/itex] that's missing in the second integral.
     
  8. Sep 16, 2012 #7
    Thanks guys. At least I know I'm getting the right process down. I'll have to talk to my professor to see if he expects this integral to be solved (through computation means or something).

    Thanks for catching that. I actually have that down on my paper, I guess I forgot to put it down in the process of writing that huge tex equation. :eek:)
     
  9. Sep 16, 2012 #8

    gabbagabbahey

    User Avatar
    Homework Helper
    Gold Member

    Perhaps your professor wants only the z-component of the field, or the approximate field for d>>h.
     
  10. Sep 16, 2012 #9
    Actually, this is a later part of the question (the d>>h). However, even if I try to simplify this in the integral, doesn't the integral look just as difficult?
     
  11. Sep 16, 2012 #10

    gabbagabbahey

    User Avatar
    Homework Helper
    Gold Member

    No, just expand [itex]\left(a^2+d^2\left(1-\left(\frac{\theta^2}{4\pi^2}\right)\left(\frac{h}{d}\right)^2\right)\right)^{- \frac{3}{2}}[/itex] in powers of [itex]\frac{h}{d}[/itex]...you will find that the x & y components go to zero.
     
  12. Sep 16, 2012 #11
    This expression for the denominator is incorrect, but you have the right idea. Just expand the 1/denominator in a series, retaining only the zero order and first order terms in theta. This will lead to expressions you can integrate.
     
  13. Sep 16, 2012 #12

    gabbagabbahey

    User Avatar
    Homework Helper
    Gold Member

    Whoops, you're right, it should be:

    [tex]\left(a^2+d^2\left(1-\left(\frac{\theta}{2\pi}\right)\left(\frac{h} {d}\right)\right)^2\right)^{- \frac{3}{2}}[/tex]

    Keep only the zeroith and first order terms in [itex]\frac{h}{d}[/itex]; the y-component will not vanish, but will be easy enough to integrate.
     
  14. Sep 19, 2012 #13
    Thanks guys. Think I got it. You've been a great help.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook