- #1
bertholf07
- 24
- 0
Electric Field Energy?
Cant solve this problem please help?
(Given)The Classical model of the hydrogen atom has a single electon in a fixed orbit around the proton with the bohr radius (5.29E-11 m). It is assumed that the Coulomb force between the proton and the electron holds the hydrogen atom together. However, this is not completely true since both the proton and the electron have a mass so that Newton's Law of universal gravitation provides also an attactive force.
(Question 1)An improvement of this classical mechanical model of the atom involves the energy density of the electric field u(E) in a region of space. Fine the total electric field energy U(E) for the electron and proton assuming that each on has a radius of 1.00E-15?
(Question 2)Include the additional contribution to the electrical potential energy U'(E) if we consider the charge within the proton as a uniform charge distribution.
Cant solve this problem please help?
(Given)The Classical model of the hydrogen atom has a single electon in a fixed orbit around the proton with the bohr radius (5.29E-11 m). It is assumed that the Coulomb force between the proton and the electron holds the hydrogen atom together. However, this is not completely true since both the proton and the electron have a mass so that Newton's Law of universal gravitation provides also an attactive force.
(Question 1)An improvement of this classical mechanical model of the atom involves the energy density of the electric field u(E) in a region of space. Fine the total electric field energy U(E) for the electron and proton assuming that each on has a radius of 1.00E-15?
(Question 2)Include the additional contribution to the electrical potential energy U'(E) if we consider the charge within the proton as a uniform charge distribution.