- #1

- 1

- 0

[tex]dE_{rad}=-\frac{1}{4\pi\epsilon_0}\frac{r\lambda d\theta}{(r^2+z^2)}\hat{\textbf{r}}[/tex]

[tex]E_{rad}=-\frac{1}{4\pi\epsilon_0}\frac{r\lambda}{(r^2+z^2)}\int_0^{2\pi} \hat{\textbf{r}} d\theta[/tex]

???

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter rick_2009
- Start date

- #1

- 1

- 0

[tex]dE_{rad}=-\frac{1}{4\pi\epsilon_0}\frac{r\lambda d\theta}{(r^2+z^2)}\hat{\textbf{r}}[/tex]

[tex]E_{rad}=-\frac{1}{4\pi\epsilon_0}\frac{r\lambda}{(r^2+z^2)}\int_0^{2\pi} \hat{\textbf{r}} d\theta[/tex]

???

- #2

Born2bwire

Science Advisor

Gold Member

- 1,779

- 22

So the electric field element points in the r-hat direction, convert that to cylindrical coordinates and then also provide the appropriate translation since you will be observing it at a point offset from the origin of the coordinate system of the electric field element.

- #3

- 3

- 0

I don't get your answer

Share: