- 185
- 1
A thin spherical shell of radius [tex] R [/tex] has charge density [tex] + \sigma [/tex] on the upper half and [tex] - \sigma [/tex] on the bottom half. Determine the electric field both inside and outside the sphere.
So its an area charge density. So I tried using Gauss's law: [tex] \oint \bold{E} \cdot d \bold{a} = \frac{Q_\text_{int}}{\epsilon_{0}} [/tex].
[tex] E(\pi r^2) = \frac{\sigma}{\epsilon_{0}} [/tex].
So its an area charge density. So I tried using Gauss's law: [tex] \oint \bold{E} \cdot d \bold{a} = \frac{Q_\text_{int}}{\epsilon_{0}} [/tex].
[tex] E(\pi r^2) = \frac{\sigma}{\epsilon_{0}} [/tex].