(adsbygoogle = window.adsbygoogle || []).push({}); Question:

The cube in the figure (attachment) has sides of length [tex]L=10.0 {\rm cm}[/tex]. The electric field is uniform, has a magnitude [tex]E=4.00 \times 10^{3} {\rm N}/{\rm C}[/tex], and is parallel to the xy-plane at an angle of [tex]36.9^\circ[/tex]c measured from the [tex]+ x - {\rm axis}[/tex] toward the [tex]+ y - {\rm axis}[/tex].

The question asks for the electric fluxes through each of the faces and the sum.

I don't really understand why the electric flux through the top and bottom faces of the cube is zero. Is it because the angle between the face and the electric field is [tex]90^\circ[/tex]?

The sum is zero because the electric field goes in through two of the faces and then leaves through two others, right?

My answer for the electric flux through face one was [tex]E \cdot L^2[/tex] or (4.00*10^(3))*(.10^2), but that was wrong. I thought the angle was 180?

**Physics Forums - The Fusion of Science and Community**

# Electric flux through a cube

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

- Similar discussions for: Electric flux through a cube

Loading...

**Physics Forums - The Fusion of Science and Community**