1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Electric Flux

  1. Feb 7, 2008 #1

    tony873004

    User Avatar
    Science Advisor
    Gold Member

    A cube of side L=2.0 m is centered at the origin, with the coordinate axes perpendicular to its faces. Find the flux of the electric field [tex]\overrightarrow E = \left( {15{\rm{ N/C}}} \right){\rm{\hat i + }}\left( {{\rm{27 N/C}}} \right){\rm{\hat j + }}\left( {{\rm{39 N/C}}} \right){\rm{\hat k}}[/tex] through each face of the cube.

    Let's just concentrate on the cube's left face. From class notes [tex]\Phi _{{\rm{left}}} = \left\langle {\overrightarrow E \cdot {\rm{\hat n}}} \right\rangle {\rm{ Area}}[/tex]

    [tex]\begin{array}{l}
    \Phi _{{\rm{left}}} = \left\langle {\overrightarrow E \cdot {\rm{\hat n}}} \right\rangle {\rm{ Area = }}\left( {15{\rm{ N/C}} \cdot 1} \right){\rm{ + }}\left( {{\rm{27 N/C}} \cdot 0} \right){\rm{ + }}\left( {{\rm{39 N/C}} \cdot 0} \right)\left( {2{\rm{m}}} \right)^2 {\rm{ = }}\left( {15{\rm{ N/C}}} \right){\rm{ + }}\left( 0 \right){\rm{ + }}\left( 0 \right)\left( {2{\rm{m}}} \right)^2 = \\
    \\
    \left( {15{\rm{ N/C}}} \right)4{\rm{m}}^2 = 60{\rm{Nm}}^{\rm{2}} /{\rm{C}} \\
    \end{array}[/tex]

    But the units are wrong. Shouldn't they be C/m2 ?
    1. The problem statement, all variables and given/known data



    2. Relevant equations



    3. The attempt at a solution
     
  2. jcsd
  3. Feb 7, 2008 #2

    rl.bhat

    User Avatar
    Homework Helper

    Shouldn't they be C/m2 ?
    This quantity defines surface charge density, not the flux.
     
  4. Feb 7, 2008 #3

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    Integrated flux is N*m^2/C, right. Gauss' Law says integrated flux*epsilon_0=Q. The units of epsilon_0 are C^2/(N*m^2). So Q comes out to be coulombs. Everything looks ok to me.
     
  5. Feb 7, 2008 #4

    tony873004

    User Avatar
    Science Advisor
    Gold Member

    Thanks. I'm glad I got the units right then.
    Can someone look over this and tell me if I did it right? Did I get the signs right? It's the first time I've done this type of problem, and the answer isn't in the back of the book.

    Although it didn't ask for total flux, should this add to 0?

    Thanks!
    [tex]\begin{array}{l}
    {\rm{\hat n}}_{{\rm{right}}} {\rm{ = \hat i}} \\
    {\rm{\hat n}}_{{\rm{left}}} {\rm{ = }} - {\rm{\hat i}} \\
    {\rm{\hat n}}_{{\rm{top}}} {\rm{ = \hat k}} \\
    {\rm{\hat n}}_{{\rm{bottom}}} {\rm{ = }} - {\rm{\hat k}} \\
    {\rm{\hat n}}_{{\rm{back}}} {\rm{ = \hat j}} \\
    {\rm{\hat n}}_{{\rm{front}}} {\rm{ = }} - {\rm{\hat j}} \\
    \\
    \end{array}
    [/tex]

    [tex]
    \begin{array}{l}
    \Phi _{{\rm{left}}} = \left\langle {\overrightarrow E \cdot {\rm{\hat n}}} \right\rangle {\rm{ Area = }}\left( {15{\rm{ N/C}} \cdot 1} \right){\rm{ + }}\left( {{\rm{27 N/C}} \cdot 0} \right){\rm{ + }}\left( {{\rm{39 N/C}} \cdot 0} \right)\left( {2{\rm{m}}} \right)^2 {\rm{ = }}\left( {15{\rm{ N/C}}} \right){\rm{ + }}\left( 0 \right){\rm{ + }}\left( 0 \right)\left( {2{\rm{m}}} \right)^2 \\
    \,\,\,\,\,\,\,\,\,\, = \,\,\left( {15{\rm{ N/C}}} \right)4{\rm{m}}^2 = - 60\,{\rm{Nm}}^{\rm{2}} /{\rm{C}} \\
    \\
    \Phi _{{\rm{right}}} = \, - \Phi _{{\rm{left}}} = 60\,{\rm{Nm}}^{\rm{2}} {\rm{/C}} \\
    \\
    \Phi _{{\rm{top}}} = \left\langle {\overrightarrow E \cdot {\rm{\hat n}}} \right\rangle {\rm{ Area = }}\left( {15{\rm{ N/C}} \cdot 0} \right){\rm{ + }}\left( {{\rm{27 N/C}} \cdot 0} \right){\rm{ + }}\left( {{\rm{39 N/C}} \cdot 1} \right)\left( {2{\rm{m}}} \right)^2 {\rm{ = }}\left( {39{\rm{ N/C}}} \right){\rm{ + }}\left( 0 \right){\rm{ + }}\left( 0 \right)\left( {2{\rm{m}}} \right)^2 \\
    \,\,\,\,\,\,\,\,\,\, = \,\,\left( {39{\rm{ N/C}}} \right)4{\rm{m}}^2 = 156\,{\rm{Nm}}^{\rm{2}} /{\rm{C}} \\
    \\
    \Phi _{{\rm{bottom}}} = - \Phi _{{\rm{top}}} = - 156\,{\rm{Nm}}^{\rm{2}} /{\rm{C}} \\
    \\
    \Phi _{{\rm{front}}} = \left\langle {\overrightarrow E \cdot {\rm{\hat n}}} \right\rangle {\rm{ Area = }}\left( {15{\rm{ N/C}} \cdot 0} \right){\rm{ + }}\left( {{\rm{27 N/C}} \cdot - {\rm{\hat j}}} \right){\rm{ + }}\left( {{\rm{39 N/C}} \cdot 0} \right)\left( {2{\rm{m}}} \right)^2 {\rm{ = }}\left( {27{\rm{ N/C}}} \right){\rm{ + }}\left( 0 \right){\rm{ + }}\left( 0 \right)\left( {2{\rm{m}}} \right)^2 \\
    \,\,\,\,\,\,\,\,\,\,\,\, = \,\,\left( {27{\rm{ N/C}}} \right)4{\rm{m}}^2 = - 108\,{\rm{Nm}}^{\rm{2}} /{\rm{C}} \\
    \\
    \Phi _{{\rm{back}}} = - \Phi _{{\rm{front}}} = 108\,{\rm{Nm}}^{\rm{2}} /{\rm{C}} \\
    \end{array}[/tex]
     
  6. Feb 7, 2008 #5

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    Sure it adds to zero. There is no charge in the cube. Otherwise the E field wouldn't be constant. Right?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Electric Flux
  1. Electric Flux homework (Replies: 0)

  2. Electric flux (Replies: 3)

  3. Electric flux (Replies: 3)

  4. Electric flux? (Replies: 5)

Loading...