• Support PF! Buy your school textbooks, materials and every day products Here!

Electric potential of cylinder

  • Thread starter bfusco
  • Start date
  • #1
128
1

Homework Statement


An insulating solid cylinder of radius R, length L carries a uniformly distributed electric charge with density [itex] \rho [/itex]. Chose the z-axis along the axis of the cylinder, z=0 in the middle of the cylinder. the cylinder can be boken down into curcular tabs (disks) of thickness dl and surface charge [itex] \sigma [/itex], the combined slabs integrated over dl make up the cylinder.
(a)Find the potential on the z axis due to a disk; express [itex] \sigma [/itex] in terms of [itex] \rho [/itex].
(b) find the potential on the z-axis V(z) for the entire cylinder.
(c)Calculate the electric field on the z-axis.

The Attempt at a Solution


(a) i drew a disk of radius R, and called the point where im calculating the potential at a point P. The disk is the sum of rings (of radius r) from 0 to R, the line from the center of the disk to the point P is z and the line connecting radius r to point P is r'.
The charge distribution [itex] \sigma =dq/dA [/itex] which turns into [itex] dq=\sigma 2\pi rdr[/itex]

Potential is:
[tex] V=k\int \frac{dq}{r'} [/tex]

Plugging the dq into the potential you get:
[tex] V=k \int \frac{\sigma 2\pi rdr}{\sqrt{r^2 + z^2}} [/tex]

Which reduces to:
[tex] V=\frac{\sigma *\sqrt{R^2 +z^2}}{2 \epsilon_0} [/tex]

Where [itex] \sigma=\rho dl [/itex]

Which gives:
[tex] V=\rho \frac{ \sqrt{R^2 + z^2} dl}{2\epsilon_0} [/tex]

(b) I know i have to sum the potentials of all the disks to make the cylinder, but idk how to do that.

is it:
[tex] V=\int_{-L/2}^{L/2} \rho \frac{\sqrt{R^2 + z^2}dl}{2\epsilon_0} [/tex]
???

(c) when i get the answer to (b) i can just take the (-)gradient of it to get E
 
Last edited:

Answers and Replies

  • #2
128
1
For part (b), is it:
[tex] V=\int_{-L/2}^{L/2} \rho \frac{\sqrt{R^2 +z^2}dz}{2\epsilon_0} [/tex]
 

Related Threads on Electric potential of cylinder

Replies
9
Views
22K
Replies
15
Views
7K
Replies
1
Views
1K
Replies
2
Views
24K
Replies
4
Views
5K
  • Last Post
Replies
1
Views
636
  • Last Post
Replies
10
Views
6K
  • Last Post
Replies
4
Views
4K
Replies
3
Views
5K
Top