(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

The work done by an external force to move a -8.50 mu C charge from point a to point b is 1.90×10^-3 J.

If the charge was started from rest and had 4.86×10^-4 J of kinetic energy when it reached point b, what must be the potential difference between a and b?

2. Relevant equations

V = PE / q

Vba = - W/q

3. The attempt at a solution

If the charge started from rest, all the energy it had was potential energy which got converted to kinetic energy at point b.

V = 4.86 x 10^-4 / -8.50 x 10^-6 C

V at point a = -57.176

Vb - (-51.176 V) = -1.90 X 10^-3 J / -8.5 X 10^-6 C

Vb + 51.716 V = 223.5 V

Vb = 165.76 (166 V)

I use MasteringPhysics and it told me the answer should have been negative but I don't understand why. My book states "When the electric force does positive work on a charge, the kinetic energy increases and the potential energy decreases. The difference in potential energy, PEb - PEb, is equal to the negative of the work, Wba, done by electric field to move the charge from a to b."

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Electric Potential Sign Check

**Physics Forums | Science Articles, Homework Help, Discussion**