(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Circular plate radius R is uniformly charged and the charge of plate is Q. Find the electric field in arbitrary point perpendicular to the plate that passes through the center. Case [tex]R\rightarrow \infty[/tex] compared with a score of Gaussian theorem.

2. Relevant equations

Gauss theorem

[tex]\int_S \vec{E}\cdot\vec{dS}=\frac{q}{\epsilon_0}[/tex]

3. The attempt at a solution

I calculate first part of assignment.

[tex]\vec{E}_A=\frac{1}{4\pi\epsilon_0}\int_S\frac{\sigma dS}{r^3}\vec{r}[/tex]

[tex]dS=\rho d\rho d\varphi[/tex]

[tex]r=\sqrt{\rho^2+z^2}[/tex]

[tex]\vec{r}=z\vec{e}_z-\rho\vec{e}_{\rho}[/tex]

and get

[tex]\vec{E}_A=\frac{\sigma}{2\epsilon_0}\frac{z}{|z|}(1-cos\alpha_0)[/tex]

When [tex]R\rightarrow \infty[/tex] [tex]\alpha_0\rightarrow \frac{\pi}{2}[/tex]

So when [tex]R\rightarrow \infty[/tex]

[tex]\vec{E}_A=\frac{\sigma}{2\epsilon_0}sgnz \vec{e}_z[/tex]

I don't know how can I do the second part with Gauss theorem? Thanks for your help!

1. The problem statement, all variables and given/known data

2. Relevant equations

3. The attempt at a solution

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Electrodynamics problem

**Physics Forums | Science Articles, Homework Help, Discussion**