# Electron Degeneracy Pressure

1. Aug 17, 2013

### Positron137

I have a question: is there any way to accurately "visualize" the phenomenon of electron degeneracy pressure? I understand that the main concept behind it is the Pauli Exclusion Principle. However, I was reading about the Chandrasekhar limit, and that it's derived from the fact that although a white dwarf bears immense gravitational inward pressure, the degeneracy pressure prevents collapse (for stars' masses <= 1.44 solar masses). I can roughly visualize an image of extreme external pressure from gravity. However, I was wondering if there was a way to visualize the degeneracy pressure. (I know Quantum mechanics is extremely abstract, but I was hoping that there might be a possible way of picturing the degeneracy pressure).

2. Oct 14, 2013

### Ken G

Sorry this wasn't answered a long time ago. Degeneracy pressure is not hard to picture at all, it is the pressure you get when you have a certain amount of kinetic energy in a box of given volume. It makes no difference if the gas is degenerate or ideal, you get the same pressure in there, and for the same reason: the particles carry momentum as they bounce off the walls, and the amount of momentum they carry, and the rate they bounce off the walls, yields a pressure that depends only on the kinetic energy per volume. You don't need any quantum mechanics to picture where the pressure comes from, you only need quantum mechanics to know the minimum amount of pressure that the particles in a box like that could ever produce, and that is what is known as "degeneracy pressure."

3. Oct 14, 2013

### Positron137

Thanks! This clears things up a lot.

Share this great discussion with others via Reddit, Google+, Twitter, or Facebook