Electron State Transistion

  • Thread starter dachikid
  • Start date
14
0

Main Question or Discussion Point

Hi All,

I'm a bit confused about electron transitions. I'm hoping someone will be willing to straighten me out. So the problem at hand states that a single ionized Helium atom has its single electron in the 5d shell. The z component of this electron's orbital angular momentum is [tex] \hbar [/tex] and its spin angular momentum is [tex] +\frac{1}{2}\hbar[/tex].

Now if the electron is initially in the ground state (i.e. 1s) what would be needed to get it to the 5d subshell?

So my initial thoughts are inclined to think that the electron must be given energy, possibly a photon. This energy would have a value of [tex] -E_0(\frac{1}{5^2} - \frac{1}{1^2})[/tex] where [tex] E_0=-13.6ev[/tex]

Because photons carry angular momentum, [tex]l[/tex] the orbital angular momentum of the electron must change in increments of [tex]\Delta l= \frac{+}{-}1[/tex] due in part to the "selection rule"

So a transition from a (1s) state [tex] \frac{n}{1} \frac{l}{0} \frac{m_l}{0} \frac{m_s}{\frac{+}{-}1}[/tex] to a (5d) state [tex] \frac{n}{5} \frac{l}{2} \frac{m_l}{1} \frac{m_s}{\frac{+}{-}1}[/tex] is not possible because [tex]\Delta l =2[/tex]

Now if I throw the atom in a magnetic field, the selection rule for [tex]\Delta m_l=0,\frac{+}{-}1[/tex] says the transition is allowed because [tex]\Delta m_l = +1 [/tex], I think :confused:

So just introducing a magnetic field allows a transition, which is not normally allowed, to be allowed?

thanks in advanced for any help!
 

Answers and Replies

979
1
Why not try two photons?
 
pam
455
1
So a transition from a (1s) state [tex] \frac{n}{1} \frac{l}{0} \frac{m_l}{0} \frac{m_s}{\frac{+}{-}1}[/tex] to a (5d) state [tex] \frac{n}{5} \frac{l}{2} \frac{m_l}{1} \frac{m_s}{\frac{+}{-}1}[/tex] is not possible because [tex]\Delta l =2[/tex]
[tex]\Delta L=2[/tex] is possible for quadrupole absorption.
Expand the incident EM plane wave into multipoles.
 

Related Threads for: Electron State Transistion

  • Last Post
Replies
0
Views
2K
  • Last Post
Replies
2
Views
1K
Replies
6
Views
4K
  • Last Post
Replies
5
Views
873
Replies
4
Views
1K
Top