Im having trouble following how this is derived: The normal component of the electric field is discontinuous by an amount sigma/epsilon_0 at any boundary (when you cross a continuous surface charge). They talk about taking a little box so that the surface integral E dot da = 1/epsilon_0 * sigma * A (where A is area parallel to surface charge) and making its width perpendicular to the surface charge very small. Somehow they get that this implies E_perpendicualAbove -E_perpendicularBelow = 1/epsilon_0 * sigma. How's this? And also, they go on saying that in cases like the surface of a uniformly charged solid sphere this doesnt apply because there is no surface charge, but I dont get this...what about the edge of the sphere, its still charged. So please any clarification will help, as i have a test tomorrow.(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Electrostatic boundary conditions

**Physics Forums | Science Articles, Homework Help, Discussion**