- 1

- 0

**1. The problem statement, all variables and given/known data**

A spherical conducting shell of radius R is held at a potential V

_{0}. Outside the shell,

the charge density is ρ(r) = ρ

_{0}sinθcosφ for R < r < 2R. Find the electrostatic potential

everywhere outside the shell.

**2. Relevant equations**

Green's function in spherical coordinates between radii a < r < b:

G(

**r,r'**) = ##\sum\limits_{l,m} {\frac{4π/(2l+1)}{l-(\frac{a}{b})^{2l+1}} Y^*_{lm}(θ',φ')Y_{lm}(θ,φ)(r^l_< - {\frac{a^{2l+1}}{r^{l+1}_<}})({\frac{1}{r^{l+1}_>}}-{\frac{r^l_>}{b^{2l+1}}})}##

The solution for the potential using Green's function with Dirichlet Boundary Conditions (V is the Volume, S is the boundary surface, n is the normal to the surface):

##Φ(\textbf{r'} ∈ V) = {\int\limits_{V} d\textbf{r} ρ(\textbf{r})G(\textbf{r',r})} - ε_0 {\int\limits_{S} R^2 \: dΩ \: V (\textbf{r}){\frac{∂G(\textbf{r',r})}{∂n}}}##

**3. The attempt at a solution**

I know the potential at the boundary surface:

## Φ_{S}(\textbf{r}) = V_0 ## where r = R

The normal direction on the surface is

**r**, a = R, b = 2R, so:

at r = R, ## {\frac{∂G(\textbf{r',r})}{∂n}} = \sum\limits_{l,m} {\frac{4π/(2l+1)}{l-(\frac{1}{2})^{2l+1}} Y^*_{lm}(θ',φ')Y_{lm}(θ,φ)((2l+1)R^{l-1})({\frac{1}{r'^{l+1}}}-{\frac{r'^l}{R^{2l+1}}})} ##

The charge density can be expressed using spherical harmonics:

## ρ = ρ_0 {\frac{1}{2}} {\sqrt{\frac{8π}{3}}} (Y_{1,-1}(θ,φ) - Y_{1,1}(θ,φ)) ##

So:

##Φ(\textbf{r'}) = {\int\limits_{Ω}}{\int\limits_{R}^{2R}} r^2 dr \: dΩ \: [ ρ_0 {\frac{1}{2}} {\sqrt{\frac{8π}{3}}} (Y_{1,-1}(θ,φ) - Y_{1,1}(θ,φ)) ] ## ...

... ## [ \sum\limits_{l,m} {\frac{4π/(2l+1)}{l-(\frac{1}{2})^{2l+1}} Y^*_{lm}(θ',φ')Y_{lm}(θ,φ)(r^l_< - {\frac{R^{2l+1}}{r^{l+1}_<}})({\frac{1}{r^{l+1}_>}}-{\frac{r^l_>}{(2R)^{2l+1}}})} ] ## ...

...##- ε_0 {\int\limits_{S} R^2 \: dΩ \: V_0 \: \sum\limits_{l,m} {\frac{4π/(2l+1)}{l-(\frac{1}{2})^{2l+1}} Y^*_{lm}(θ',φ')Y_{lm}(θ,φ)((2l+1)R^{l-1})({\frac{1}{r'^{l+1}}}-{\frac{r'^l}{R^{2l+1}}})} }##

Am I barking up the wrong tree? I am looking for some key simplification. Maybe my approach is over-complicating it, and I should use a Gaussian surface. The issue with that is that I don't see where the electric field would be constant, leading to a simplification.

Last edited: