Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Elegant Notation

  1. Mar 27, 2007 #1
    Hi guys, just wondering if you can give me some advice on how to write certain co-efficients with in a compact elegant way.

    The co-efficients are given by the following rule:

    a0=1
    a1=z
    a2=z(z-1)
    a3=z(z-1)(z-2)
    .
    .
    .
    an=z(z-1)(z-2)...(z-(n-1))

    where a = any real number

    I was thinking of using the following definition, an = z!/(z-n)! which seems to give me the correct results but im worried about whether or not the ! can be defined on real numbers. Like is there a problem with this definition?
     
  2. jcsd
  3. Mar 27, 2007 #2

    quasar987

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    The ! can't really be defined on reals analogously to on N, but the expression "z!/(z-n)!" as a whole makes a lot of sense. Analogously to N, it means multiply z by z-1 by z-2, etc up to z-n+1.
     
  4. Mar 27, 2007 #3

    morphism

    User Avatar
    Science Advisor
    Homework Helper

    How about (for n>1)

    [tex] a_n = \prod_{i=0}^{n-1} (z-i)[/tex]

    Written differently, you can define it recursively by

    [tex]a_0 = 1[/tex]

    and

    [tex]a_n = a_{n-1} \cdot (z - (n-1)), \ \text{for } \, n \geq 1[/tex]
     
    Last edited: Mar 27, 2007
  5. Mar 27, 2007 #4

    Pythagorean

    User Avatar
    Gold Member


    What's that thing called anyway? I know that it is to multiplication what the sigma is to addition, but is it just a capital pi or what?
     
  6. Mar 27, 2007 #5
    I am pretty sure it is just a capital pi.
     
  7. Mar 27, 2007 #6

    jim mcnamara

    User Avatar
    Science Advisor
    Gold Member

    I learned it as "product". But that was fifty years ago....
     
  8. Mar 28, 2007 #7

    Gib Z

    User Avatar
    Homework Helper

    Lol maybe you misunderstood, yes they mean it as product as well jim, but they're just saying, the actual letter used to show that is a capital pi from the greek alphabet.

    And just incase everyones forgotten, these can be very easily written with binomial notation?

    EDIT: Shoot my last statement, though it could still help a tiny bit.

    [tex]{r \choose k} &{}= {1 \over k!}\prod_{n=0}^{k-1}(r-n)=\frac{r(r-1)(r-2)\cdots(r-(k-1))}{k!}[/tex]
     
    Last edited: Mar 28, 2007
  9. Mar 28, 2007 #8
    Try [tex]\frac{\Gamma(z+1)}{\Gamma(z-n+1)}[/tex]
    The gamma function is the unique extension of the factorial function to the real numbers. [tex]\Gamma(z+1) = z![/tex]

    By the way, if you are only doing this with integers, the accepted notation is [tex](z)_n[/tex] It is known as the falling factorial, or Pochhammer symbol
     
    Last edited: Mar 28, 2007
  10. Mar 28, 2007 #9

    Hurkyl

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    It's not unique. For example,

    [tex]f(z) = \Gamma(z + 1) + \sin (\pi z)[/tex]

    also agrees with the factorial function on the natural numbers. And so does

    [tex]f(z) = \begin{cases}
    0 & z < 0\\
    \lfloor z \rfloor ! & z \geq 0
    [/tex]

    and

    [tex]f(z) = \begin{cases}
    z! & z \in \mathbb{N} \\
    -14 & z \notin \mathbb{N}
    [/tex]
     
    Last edited: Mar 28, 2007
  11. Mar 28, 2007 #10
    What I meant is that it's unique in that it extends all of the properties of the factorial function to the real (and complex) numbers so that for all complex numbers (except 0) [tex]\Gamma(z+1) = z*\Gamma(z)[/tex] and so that it is complex differentiable at all points except 0,-1,-2,...

    However, I haven't studied the Gamma function, so I don't know much else about it.
     
    Last edited: Mar 28, 2007
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Elegant Notation
  1. What notation is this? (Replies: 4)

  2. Leibniz notation (Replies: 10)

  3. Fourier notation (Replies: 1)

  4. Integral notation (Replies: 4)

Loading...