(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A skier is pulled up by a towrope up a frictionless ski slope that makes an angle of 12 degrees with the horizontal. The rope moves parallel to the slope with a constant speed of 1.0 m/s. The force of the rope does 900 J of work on the skier as the skier moves a distance of 8m up the incline. If the rope moved with a constant speed of 2 m/s, how much work would the force of the rope do on the skier as the skier moved a distance of 8m up the incline?

2. Relevant equations

W=KE or W=KE+PE

3. The attempt at a solution

This is a rather conceptual problem in my opinion. So I know the work-kinetic energy theorem. change in K=W. However, my question is: Does it only apply to a system where there is only kinetic energy present or it can be applied to a system where both Kinetic energy and potential energy present. I didn't use K=W, I had W=KE+PE. KE is 0, so W=PE. Because in this case, clearly, there are both Kinetic energy and Potential energy (8m) on the skier. But my teacher still used change in K=W=0, and since the work includes the work from the rope and gravity, they must be same in magnitude and opposite in direction. I hope someone can clarify things for me. thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Energy and Work

**Physics Forums | Science Articles, Homework Help, Discussion**