Energy conservation question

  • #1

Main Question or Discussion Point

In the attached picture below I am compressing a spring...
In picture 2, I've compressed the spring a distance x and thus the elastic potential is 1/2 kx^2 and the total energy in the system AT THAT POINT is 1/2 kx^2 + mgh, isn't it? (m is the mass of the ball and h the height from my reference level, the floor) Or am I wrong in thinking this?
Assuming energy conservation, let's say I let go of the spring and it's at that point where it has JUST gone over the edge of the table with its constant horizontal velocity Vx; would the total energy at that point be equal to 1/2 mVx^2 (where m is the mass of the ball) or would I be wrong in assuming this?
Thanks for any help.
 

Attachments

Answers and Replies

  • #2
Doc Al
Mentor
44,869
1,115
Pseudo Statistic said:
In the attached picture below I am compressing a spring...
In picture 2, I've compressed the spring a distance x and thus the elastic potential is 1/2 kx^2 and the total energy in the system AT THAT POINT is 1/2 kx^2 + mgh, isn't it? (m is the mass of the ball and h the height from my reference level, the floor) Or am I wrong in thinking this?
Your thinking seems correct. That would be the total mechanical energy of the ball/spring/earth system.

Assuming energy conservation, let's say I let go of the spring and it's at that point where it has JUST gone over the edge of the table with its constant horizontal velocity Vx; would the total energy at that point be equal to 1/2 mVx^2 (where m is the mass of the ball) or would I be wrong in assuming this?
You forgot the gravitational PE (mgh). The total mechanical energy at that point would be its KE + mgh.
 
  • #3
Alright so, the mghs in the equality would cancel out leaving us with 1/2mv^2 = 1/2 kx^2, wouldn't it?
Thanks for the reply.
 
  • #4
Doc Al
Mentor
44,869
1,115
That's right. The spring PE is transformed into KE. (Since the height never changes, the gravitational PE remains constant.)
 
  • #5
Alright, thanks, but one more thing...
The kinetic energy would be equal to half of the mass times by the constant horizontal velocity the ball would experience when under projectile motion squared, correct?
 

Related Threads for: Energy conservation question

  • Last Post
Replies
2
Views
1K
Replies
2
Views
1K
Replies
9
Views
436
Replies
2
Views
766
Replies
2
Views
1K
Replies
7
Views
3K
Replies
2
Views
4K
Replies
5
Views
3K
Top