Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Energy Gravitates?

  1. Jun 21, 2013 #1

    russ_watters

    User Avatar

    Staff: Mentor

    Fairly straightforward question/check of my understanding:

    It is my understanding that energy gravitates (is that proper phrasing?), but not potential energy, since that is energy of a system, not internal energy of an object.

    This would mean that as a star collapses and potential energy is converted to heat and pressure energy, its gravitational field measured from a distance would get stronger. Is that true? It seems to contradict what is typically said about black holes having exactly the same gravitational field strength at a distance after collapse as before - unless that's just a simplification due to the effect being small.
     
  2. jcsd
  3. Jun 21, 2013 #2

    PeterDonis

    User Avatar
    2016 Award

    Staff: Mentor

    No, in so far as energy gravitates, potential energy does too.

    No. If the collapse process doesn't radiate any energy away to infinity, then the gravitational field at a distance remains constant. If energy is radiated away to infinity, then the gravitational field at a distance weakens by the mass equivalent of the energy radiated away.
     
  4. Jun 21, 2013 #3

    PAllen

    User Avatar
    Science Advisor
    Gold Member

    You can see what Peter refers to for potential energy in the formula for Komar mass. The 'locally measured mass' gets discounted in its contribution to mass measured at a distance by the time dilation factor, which can be taken as a measure of its loss of potential energy.
     
  5. Jun 21, 2013 #4
    PeterDonis and PAllen have taught me the source of gravity, the stress energy tensor, includes all forms of energy...the energy of all types of fields.

    As long as a star collapse is symmetric, the components of collapse offset as observed from an exterior distance.

    The other 'trick' they have taught me is that the SET is properly in the frame of the center of mass...so for example, the kinetic energy of a laterally moving star does not reflect in it's gravitational nature.


    Spacetime in special relativity is usually described as flat spacetime...Minkowski spacetime as an example. Yet objects in relative motion 'distort' space and time in SR...We call that time dilation and length contraction. And objects in SR can move in curved worldlines....that is, curved paths in spacetime. So there IS a type of curvature in SR, but it is not gravitational in nature. In other words, bodies in relative motion may curve spacetime but not in a gravitational way.

    It was explained to me elsewhere in these forums some years ago that you can picture world line [path] curves in SR as you would curves on a flat graph paper. When gravitational curvature is involved, as in GR, the graph paper itself on which the curved worldlines are drawn is itself curved.
     
  6. Jun 21, 2013 #5

    WannabeNewton

    User Avatar
    Science Advisor

    We have to be careful here. One of the physical reasons for why the always valid local conservation of energy ##\nabla^{a} T_{ab} = 0## fails to give, in general, a globally conserved energy is because there is no known physically meaningful notion of the local stress-energy of the gravitational field in general relativity i.e. ##T_{ab}## includes only non-gravitational field energy; however the total energy of space-time should surely take into account the self-energy density of the gravitational field. There have been objects constructed that try and represent the gravitational field energy for arbitrary space-time solutions to the Einstein equations but there have been issues tied with such constructions.

    For example one can construct what is known as the Bel-Robinson tensor ##T_{abcd} = C_{aecf}C_{b}{}{}^{e}{}{}_{d}{}{}^{f} -\frac{3}{2}g_{a[b}C_{jk]cf}C^{jk}{}{}_{d}{}{}^{f}## where ##C_{abcd}## is the Weyl curvature tensor. One can show that ##T_{abcd} = T_{(abcd)}## and that ##\nabla^{a}T_{abcd} = 0##. As you can see, ##T_{abcd}## has properties similar to that of ##T_{ab}## and is actually analogous in form to the stress-energy tensor of the electromagnetic field except instead of the electromagnetic field tensor we are using the space-time curvature (as we would expect if this quantity is to be related to the gravitational field). Regardless, ##T_{abcd}## does not even have the appropriate units.

    Something else that is done is the introduction of the "Landau-Lifgarbagez pseudo tensor" ##t_{ab}## which is constructed out of the Einstein tensor but ##t_{ab}## fails to be gauge invariant, owing again to the comments made in the first paragraph.
     
  7. Jun 21, 2013 #6
    wannabe posts:
    I roughly get the gist of that. But I had thought the non linearity of Tab reflected the self energy density.....I guess not......

    Can you suggest a better way to phrase this:
     
  8. Jun 21, 2013 #7
    I just checked wikipedia.....and I find this statement conflicted..

    http://en.wikipedia.org/wiki/Stress-energy_tensor

    Sounds like they are saying the SET is the source of the gravitational field, but not its energy??
     
  9. Jun 21, 2013 #8

    WannabeNewton

    User Avatar
    Science Advisor

    The stress energy tensor is the source of the gravitational field in general relativity but that does not mean it has the ability to codify the energy density of the gravitational field itself for arbitrary space-times. There is no known general prescription for extending the Newtonian energy density for the gravitational field to arbitrary space-times within the framework of general relativity, especially if the general covariance of general relativity is to be preserved. See here: http://en.wikipedia.org/wiki/Stress–energy–momentum_pseudotensor
     
  10. Jun 21, 2013 #9

    PeterDonis

    User Avatar
    2016 Award

    Staff: Mentor

    You should know by now that Wikipedia is not a good source of info about questions with any degree of subtlety to them. :wink:

    The SET appears on the RHS of the Einstein Field Equation; that's the sense in which it is the "source" of gravity. There is no "energy of the gravitational field" in the SET because, from the standpoint of the EFE, the gravitational field is the "effect", not the "source"; it's on the LHS of the EFE, not the RHS.

    (Of course you could try to reshuffle terms from one side of the EFE to the other; but the standard way of writing the EFE has the unique property that the covariant divergence of the LHS, the Einstein tensor, is identically zero, because of the Bianchi identities. That means the covariant divergence of the RHS, the standard SET, is also zero, and *that* means the SET is locally conserved; the "stuff" the SET describes is not created or destroyed at any point in spacetime. That's a highly desirable property.)

    Whether or not you consider the SET to be the only "energy" present depends on how you define energy; as WannabeNewton pointed out, there are ways to define "energy in the gravitational field", even though that isn't included in the SET, but all of them have issues. (One key issue is that all of these definitions amount to reshuffling terms from one side of the EFE to the other, which, as noted above, destroys the highly desirable property of local conservation of "energy".)

    Btw, I blogged about this on PF some time back, in response to another thread where this came up:

    https://www.physicsforums.com/blog.php?b=4287 [Broken]

    That series of posts goes into more detail about the stuff I discussed above, as well as other relevant issues.
     
    Last edited by a moderator: May 6, 2017
  11. Jun 21, 2013 #10
    Naty:

    I'm not going to dispute anything Donis has taught you--I know better--but are you saying that there is spacetime curvature that has nothing to do with gravity? I'm a little confused here. I thought bodies in relative motion, at least for the most, were following curvatures in spacetime (gravity) being created by the mass of other bodies.
     
  12. Jun 21, 2013 #11
    As a user/abuser of wikipedia, I like your diplomatic wording :smile:


    lol so we can't "harness" the effect of a gravitational field and extract energy from it :tongue2:
     
  13. Jun 21, 2013 #12

    PAllen

    User Avatar
    Science Advisor
    Gold Member

    Well, per the so called Penrose process, you can extract energy from a rotating BH until it eventually vanishes.
     
  14. Jun 21, 2013 #13
    WHAT! Is that for real? Rotating specifically; so is that energy spitting out as gravitational waves?

    Can't wait to read about that...heading to wikipedia, sorry PeterDonis :tongue2:
     
  15. Jun 21, 2013 #14

    PAllen

    User Avatar
    Science Advisor
    Gold Member

    Well, I misspoke about one thing. The Penrose process can proceed not until the BH vanishes, but only until it has lost all angular momentum. Effectively, the angular momentum is extracted from the BH.
     
  16. Jun 21, 2013 #15

    WannabeNewton

    User Avatar
    Science Advisor

    Well the penrose process deals with particles. There is a wave analogue called superradiance. This works for gravitational as well as electromagnetic and scalar waves for as long as the stationary black hole is rotating.
     
  17. Jun 21, 2013 #16

    PeterDonis

    User Avatar
    2016 Award

    Staff: Mentor

    I don't think he is, but if he is, he's not correct. Spacetime curvature is always associated with gravity. (I would say spacetime curvature *is* gravity, but that's really only true for tidal gravity, and the term "gravity" itself is broader than that.)

    Gravity is not the only interaction: there's electromagnetism, and the weak and strong nuclear forces, as well. All of them can cause relative motion. But only gravity does so by spacetime curvature.
     
  18. Jun 21, 2013 #17

    PeterDonis

    User Avatar
    2016 Award

    Staff: Mentor

    A single rotating BH can't emit gravitational waves. The energy extracted by the Penrose process comes out as additional kinetic energy of particles coming out of the ergosphere, or additional wave energy of (non-gravitational) waves coming out of the ergosphere.
     
  19. Jun 21, 2013 #18
    Thanks for the explinations guys! :smile: I read a snip-it of the wiki too,

    It described a piece of matter entering the "ergosphere" and then it splits into two, okay whatever, some magic happens.

    And one piece of matter falls into the BH and the other is flung out into the universe with extra energy. But it clearly says this relates to the spinning of the black hole. Not an "extraction" of energy from the gravity field of the black hole.

    My "WHAT!" has gone down to a "that makes sense". (only understanding where the energy comes from, and from what i read here and in the wiki it ain't the gravitational field of the BH)
     
  20. Jun 21, 2013 #19

    WannabeNewton

    User Avatar
    Science Advisor

    The point is that the energy ##E = -p_a \xi^a## can be negative in the ergosphere. If we throw a particle at the ergosphere, we can arrange for it to blow up into two pieces: one which falls into the rotating black hole with negative energy and the other which escapes to infinity with a net positive energy greater than that of the original particle (by local conservation of energy). In doing this the negative energy of the infalling piece actually carries negative angular momentum into the black hole and we get an upper bound on this process after which it can no longer be done.
     
  21. Jun 21, 2013 #20

    pervect

    User Avatar
    Staff Emeritus
    Science Advisor

    No.
    Issues like this are why we don't even have a definition for "energy" in GR, except for some important special cases.

    To study the collapse of a star, you'd probably want to use one of those special cases, asymptotic flatness, in which case you'd have a couple of choices for energy, the ADM energy and the Bondi energy.

    If the collapse is spherically symmetrical, it won't radiate any gravitational waves away, and the two masses will be identical, and constant.

    If there is significant gravitational radiation, the Bondi mass will decrase, while the ADM mass won't.

    There's an even simpler one, the Komar mass, that could also be useful, but strictly speaking it doesn't apply to collapse situations. I'm not sure how much trouble you can get into by trying to apply it to "slow" collapses, but since I haven't seen anyone try to propose such a thing formally in a paper, I have to suppose you can get into quite a bit of trouble. (It's possible it has been done successfully , and I've missed the paper, of course.)

    Anyway, you'd have to get deep into the technicalities here to get a really good understanding - the ADM and Bondi masses in general don't come from solely the matter distribution, but come from the metric. This means that they can, in general, depend not only the matter, but the "gravitational fields" as expressed by the metric or any of the other tensor quantities that you can derive from it.

    One example to illustrate - gravity waves carry "energy", in some sense, in that they have the ability to do work. (As per Fenyman's stickiy bead argument).

    ADM mass includes the "energy" in gravity waves, Bondi mass doesn't, ,and you'd have a tough time making a static system that includes gravity waves, so I don't think it even applies.
     
    Last edited: Jun 21, 2013
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Energy Gravitates?
  1. Gravitational energy (Replies: 6)

Loading...