- #1
- 351
- 41
In Special Relativity, we have the four vector, (E/c, px, py, pz). However, isn't the first term just `p` given that `E=pc` for a photon? Why is it an energy-momentum four vector when the first term isn't really energy but momentum?
For a photon (or indeed any massless particle), yes, the energy is ##pc##. However, this is not true for a general massive particle.In Special Relativity, we have the four vector, (E/c, px, py, pz). However, isn't the first term just `p` given that `E=pc` for a photon? Why is it an energy-momentum four vector when the first term isn't really energy but momentum?
Wouldn't the dimension of that quantity still not be energy? And be momentum insteadFor a photon (or indeed any massless particle), yes, the energy is ##pc##. However, this is not true for a general massive particle.
Usually we work in units where ##c = 1##. In those units energy and momentum have the same dimension. If you work in units where ##c \neq 1## yes, the dimensions are those of momentum, that does not mean that the interpretation of the time component is not the energy divided by ##c## (which it is).Wouldn't the dimension of that quantity still not be energy?
I understand the part where if you set c=1 E=p. I don't get the other part? Time component?Usually we work in units where ##c = 1##. In those units energy and momentum have the same dimension. If you work in units where ##c \neq 1## yes, the dimensions are those of momentum, that does not mean that the interpretation of the time component is not the energy divided by ##c## (which it is).
I understand the part where if you set c=1 E=p. I don't get the other part? Time component?
Emphasis mine.I understand the part where if you set c=1 E=p. I don't get the other part? Time component?
ALL four vectors have one time component and three spatial components
That is interesting. As you probably know by now, I’m new to branching out of the basic version of SR and trying to jump into the adult version. Every little by helps.More precisely, all 4-vectors have one time component and three spatial components in a coordinate chart with one timelike and three spacelike coordinates. The components of a 4-vector depend on the coordinate chart; there are charts that do not have one timelike and three spacelike coordinates.
That is interesting. As you probably know by now, I’m new to branching out of the basic version of SR and trying to jump into the adult version. Every little by helps.
I'm familiar with the concepts but only on the first/second year physics student level. As in, for example, a lightlike spacetime interval means Δs2=0. But I have not contemplated that with respect to other 4-vector relationships, or really any further than that (other than the obvious stuff: there can't be causal relations between events separated by spacelike intervals, etc).Are you familiar with the spacetime interval? And what it means for an interval to be timelike, lightlike, or spacelike? I suggest you start there with the relationship between space and time. Then when going into the relationship between and energy and momentum you will better understand the temporal and spatial components of the energy-momentum 4-vector.