(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Show that [tex]\frac{1}{2}\frac{\mathrm{d} ^{2}}{\mathrm{d} t^{2}}\int_{V}\rho x^{j}x^{k}dV = \int_{V}T^{jk}dV [/tex].

2. Relevant equations

3. The attempt at a solution

[itex]\partial _{t}T^{t\nu } = -\partial _{i}T^{i\nu }[/itex] from conservation of energy - momentum. [itex]\partial_{t}\partial_{t}(T^{tt}x^{j}x^{k}) =(\partial_{t}\partial_{t}T^{tt})x^{j}x^{k} [/itex] since the x's are fixed coordinates of their respective volume element inside the source. So using the equality from conservation of energy - momentum I get [itex]\partial_{t}\partial_{t}(T^{tt}x^{j}x^{k}) =(\partial _{i}\partial _{m}T^{im})x^{j}x^{k}[/itex] and by using the product rule on [itex]\partial _{i}\partial _{m}(T^{im}x^{j}x^{k})[/itex] to solve for the right hand side of the previous equation I get [tex]\partial_{t} \partial_{t}(T^{tt}x^{j}x^{k}) = \partial _{i}\partial _{m}(T^{im}x^{j}x^{k}) - 2\partial _{i}(T^{ij}x^{k} + T^{ik}x^{j}) + 2T^{jk}[/tex] and this is where I am stuck. I don't know if what I am doing after this is exactly correct. For instance, [tex]-2\int_{V}\partial _{i}(T^{ij}x^{k})dV = -2\int_{\partial V}(T^{ij}x^{k})dS_{i} = 0[/tex] as per Stoke's Theorem and because [itex]T^{ij}[/itex] has to vanish at the boundary of the source so that the pressure differs smoothly from the source to the outside but I don't think I applied Stoke's Theorem correctly here. I did the same with the [itex]T^{ik}[/itex] also in the parentheses and for the first expression I did [tex]\int_{V}\partial_{m} \partial _{i}(T^{im}x^{j}x^{k})dV = \frac{\mathrm{d} }{\mathrm{d} x^{m}}\int_{V}\partial _{i}(T^{im}x^{j}x^{k})dV = \frac{\mathrm{d} }{\mathrm{d} x^{m}}\int_{\partial V}(T^{im}x^{j}x^{k})dS_{i} = 0[/tex] for the same reason as before so that [itex]\int_{V}\partial _{t}\partial _{t}(T^{tt}x^{j}x^{k})dV = \frac{\mathrm{d} ^{2}}{\mathrm{d} t^{2}}\int_{V}\rho x^{j}x^{k} = 2\int_{V}T^{jk}dV[/itex]. Could anyone tell me where and how I used Stoke's Theorem wrongly here and how I am supposed to correctly use it in the context of this problem? Thanks in advance.

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Energy - Momentum tensor identity

**Physics Forums | Science Articles, Homework Help, Discussion**