A particle of mass 'm' is moving in a circular orbit under the influence of the potential [itex]V(x) = \frac{ar^4}{4}[/itex] where 'a' is a constant. Given that the allowed orbits are those whose circumference is [itex]n\lambda[/itex], where 'n' is an integer and [itex]\lambda[/itex] is the de-Broglie wavelength of the particle. Obtain the energy of the particle as a function of 'n' and [itex]\lambda[/itex].(adsbygoogle = window.adsbygoogle || []).push({});

So,

[tex]2\pi r_n = n\lambda[/tex]

I don't understand how the potential of the orbit comes into the picture here. Isn't PE = 2KE for Bohr orbits? How is the energy calculated?

**Physics Forums - The Fusion of Science and Community**

# Energy of a particle

Have something to add?

- Similar discussions for: Energy of a particle

Loading...

**Physics Forums - The Fusion of Science and Community**