- #1

- 54

- 0

## Main Question or Discussion Point

Can someone help me on this problem? Here's my work :)

Calculate the energy released in the fission reaction:

n + 235/92U-> Sr-88 + Xe-136 + 12n

Use appendix D, assume the initial KE of the neutron is very small

It can be seen that when the compound nucleus splits, it breaks into fission fragments, Strontium-88, Xenon-136, and some neutrons. Both fission products then decay by multiple emissions as a result of the high neutron-to-proton ratio possessed by these nuclides.

1/0 n + 235/92U ->236/92 U -> 88 / 38 Sr + 136/54Xe + 12/0n

ΔBE = BEproducts – BEreactamts

ΔBE = BEproducts – BEreactamts

ΔBE = (BESr-88 + BEXe-136 ) – (BEU-235)

ΔBE = (BESr-88 + BEXe-136 ) – (BEU-235)

ΔBE = (783.2MeV + 1156MeV ) – (1786 MeV)

= 153.2 MeV

Calculate the energy released in the fission reaction:

n + 235/92U-> Sr-88 + Xe-136 + 12n

Use appendix D, assume the initial KE of the neutron is very small

It can be seen that when the compound nucleus splits, it breaks into fission fragments, Strontium-88, Xenon-136, and some neutrons. Both fission products then decay by multiple emissions as a result of the high neutron-to-proton ratio possessed by these nuclides.

1/0 n + 235/92U ->236/92 U -> 88 / 38 Sr + 136/54Xe + 12/0n

ΔBE = BEproducts – BEreactamts

ΔBE = BEproducts – BEreactamts

ΔBE = (BESr-88 + BEXe-136 ) – (BEU-235)

ΔBE = (BESr-88 + BEXe-136 ) – (BEU-235)

ΔBE = (783.2MeV + 1156MeV ) – (1786 MeV)

= 153.2 MeV