Q. Fix n>= 1. If the nth roots of 1 are w_0,...,w_(n-1), show that they satisfy:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

\left( {z - \omega _0 } \right)\left( {z - \omega _1 } \right)...\left( {z - \omega _{n - 1} } \right) = z^n - 1

[/tex]

I tried considering z^n = 1.

[tex]

z^n = e^{i2\pi + 2k\pi i} \Rightarrow z = e^{\frac{{i2\pi }}{n} + \frac{{2k\pi i}}{n}}

[/tex] with k = 0,1,2....n-1.

I haven't been able to get anywhere with this so can someone please help out?

Also how would I do the following? The relevant information is given in the stem of the previous question I posted.

Q. Show that the omegas satisfy: [tex]\omega _0 \omega _1 ...\omega _{n - 1} = \left( { - 1} \right)^{n - 1} [/tex]

Again I haven't really gotten anywhere in my attempts.

[tex]\omega _0 \omega _1 ...\omega _{n - 1} = \left( {e^{\frac{{i2\pi }}{n} + \frac{{2\left( 0 \right)\pi i}}{n}} } \right)\left( {e^{\frac{{i2\pi }}{n} + \frac{{2\left( 1 \right)\pi i}}{n}} } \right)...\left( {e^{\frac{{i2\pi }}{n} + \frac{{2\left( {n - 1} \right)\pi i}}{n}} } \right)[/tex]

[tex]

= e^{\frac{{i2\pi n}}{n} + \frac{{2\left( {0 + 1 + ...\left( {n - 1} \right)} \right)\pi i}}{n}} = e^{i2\pi } e^{\frac{{2\left( {\sum\limits_{j = 0}^{n - 1} k } \right)\pi i}}{n}} = e^{\frac{{2\left( {\sum\limits_{j = 0}^{n - 1} k } \right)\pi i}}{n}}

[/tex]

[tex]

= e^{\frac{{2\left( {\sum\limits_{j = 0}^{n - 1} k } \right)\pi i}}{n}} = e^{\frac{{2\left( {\sum\limits_{j = 1}^n {\left( {k - 1} \right)} } \right)\pi i}}{n}}

[/tex]

So that's all I've been able to do. Some help would be appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Equation satisfied by nth roots of unity

**Physics Forums | Science Articles, Homework Help, Discussion**