Equivalence Class

  • MHB
  • Thread starter cbarker1
  • Start date
  • #1
cbarker1
Gold Member
MHB
340
21
Dear Everyone,

$\newcommand{\R}{\mathbb{R}}$
I am struck in writing the equivalence classes. And the problem is this:
Let ${\R}^{2}= \R \times \R$. Consider the relation $\sim$ on ${\R}^{2}$ that is given by $({x}_{1},{y}_{1}) \sim ({x}_{2},{y}_{2})$ whenever ${y}_{1}-{{x}_{1}}^{3}={y}_{2}-{{x}_{2}}^{3}$. Prove that $\sim$ is an equivalence relation. What are the equivalence classes?

I have proved that relation is an equivalence relation.

Here is my attempt:

$(a,b)=\left\{(x,y)\in{\R}^{2}|y-{x}^{3}=b-{a}^{3}\right\}$

Thanks
Cbarker1
 

Answers and Replies

  • #2
GJA
Gold Member
MHB
290
43
Hi Cbarker1,

Since you have shown it is an equivalence relation, you know that every point in $\mathbb{R}^{2}$ must belong to an equivalence class. Consider points along the $x$-axis and see if you can determine the class to which they belong. Alternatively, you could also try points along the $y$-axis. In either case, this should help you figure things out.
 

Suggested for: Equivalence Class

  • Last Post
Replies
2
Views
507
Replies
9
Views
580
  • Last Post
Replies
2
Views
881
Replies
8
Views
592
  • Last Post
Replies
1
Views
846
  • Last Post
Replies
1
Views
932
  • Last Post
Replies
9
Views
1K
Replies
14
Views
939
Replies
25
Views
1K
  • Last Post
Replies
1
Views
890
Top