(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let's have random value X defined by its density function:

[tex]

f(x; \beta) = \beta^2x \mbox{e}^{-\beta x}

[/tex]

where [itex]\beta > 0[/itex] for [itex]x > 0[/itex] and [itex]f(x) = 0[/itex] otherwise.

Expected value of X is [itex]EX = \frac{2}{\beta}[/itex] and variance is [itex]\mbox{var } X = \frac{2}{\beta^2}.[/itex]

Next, suppose we have random sample [itex]X_1, X_2, ..., X_n[/itex] from distribution defined by the given density function.

Infer estimate of the parameter [itex]\beta[/itex] using the method of maximum likelihood.

3. The attempt at a solution

[tex]

L(\beta; X) = \prod_{i=1}^{n} f(X_i; \beta)

[/tex]

[tex]

\mbox{lik}(\beta; X) = \log L(\beta; X) = \sum \log f(X_i; \beta) = ... = 2n\log \beta + \sum \left( \log X_i - \beta X_i\right)

[/tex]

Now we'll find derivative of [itex]\mbox{lik}(\beta; X)[/itex] and find point where it's equal to zero (to find maximum of likelihood function).

[tex]

\frac{\partial \mbox{lik} (\beta; X)}{\partial \beta} = \frac{2n}{\beta} - \sum X_i

[/tex]

[tex]

\frac{2n}{\widehat{\beta}} - \sum X_i = 0

[/tex]

[tex]

\widehat{\beta} = \frac{2n}{\sum X_i} = \frac{2}{\overline{X_{n}}}

[/tex]

So [itex]\widehat{\beta}[/itex] is estimate of [itex]\beta[/itex].

Next task is the following:

Infer asymptotical distribution of [itex]\widehat{\beta}[/itex]. Hint: Use Fisher information [itex]\mathcal{F}_n = -\mbox{E} \frac{

\partial^2 \mbox{lik}(\beta) }{\partial \beta^2}[/itex].

Using infered asymptotical distribution [itex]\widehat{\beta} \sim \mathbf{N}(\beta, \mathcal{F}_{n}^{-1})[/itex], try to designate a confidence

interval for parameter [itex]\beta[/itex] (possible unknown parameters replace with their estimates).

With this I'm having little troubles. I compute Fisher information:

[tex]

\mathcal{F}_n = -\mbox{E} \frac{ \partial^2 \mbox{lik}(\beta) }{\partial \beta^2} = -\mbox{E} \left( -\frac{2n}{\beta^2} \right)

[/tex]

And now what? Can I continue like this?

[tex]

\mathcal{F}_n = -\mbox{E} \left( -\frac{2n}{\beta^2} \right) = \frac{2n}{\beta^2}

[/tex]

or am I supposed to expand it and continue like this?

[tex]

\mathcal{F}_n = -\mbox{E} \left( -\frac{2n}{\beta^2} \right) = \mbox{E} \left{ \frac{2n}{\widehat{\beta}}^2} \right} = \mbox{E} \left{

\frac{2n\left( \overline{X_n}^2 \right)}{4} \right} = \mbox{E} \left{ \frac{1}{2} n \left( \overline{X_n}^2 \right) \right}

[/tex]

I don't know how to continue..

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Estimation of parameters using maximum likelihood method

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**