In robotics, you have a co-ordinate frame which is at the base & another which is at the next joint. You want to describe the position and orientation of the 2nd frame with respect to the first in terms of position and orientation. For the position, you use a translation matrix.(adsbygoogle = window.adsbygoogle || []).push({});

The orientation is described by a rotation matrix which rotates the 2nd frame from it's coincident position with the first frame and brings it to it's final position.

Let the 1st frame have axis X, Y, Z

Let 2nd frame have axis x, y, z

To describe frame 2 in terms or frame 1, you start with both frames very fully coincident at the beginning (i.e. even in orientation).

Then you have 2 methods.

1) Fixed Axis angles.

Then

- you rotate frame 2 by t1 about X - Rx(t1)

- you rotate frame 2 by t2 about Y - Ry(t2)

- you rotate frame 2 by t3 about Z - Rz(t2)

So new orientation of frame 2 is given by

Rz(t3) * Ry(t2) * Rx(t1)

(Obviously, you pre-multiply the 1st matrix by the 2nd. And the premultiply the result with the 3rd matrix)

2) Euler Angles

2nd way of describing it is by Euler angles - i.e. you rotate the 2nd frame about one of it's own axis (x or y or z), instead of (X, Y or Z)

- rotate frame 2 by t3 about x - (y becomes y' & z becomes z')

- rotate frame 2 by t2 about y' - (x becomes x' & z becomes z'')

- rotate frame 2 by t1 about z" - (x' becomes x'' & y becomes y")

Now this transform is described again by

Rz(t3) * Ry(t2) * Rx(t1)

I want to know how is this 2nd transform derived?

I know how the first one is derived because I know how to find the rotation matrix for rotating a point about about a fixed axis. And I know that if you are working with column vectors (for the point), you premultiply the 1st rotation matrix by the 2nd rotation matrix.

However, I am not able to grok how you write the transformation matrices for the 2nd case.

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Euler Angles - Why Post Multiplication

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

Loading...

Similar Threads - Euler Angles Post | Date |
---|---|

Dynamic contact angle simulation in COMSOL | Dec 18, 2017 |

Derive Euler–Bernoulli equation from Navier-Cauchy equations | Sep 11, 2015 |

Virtual work in finite plane bending of Euler-Bernoulli beam | Jul 17, 2015 |

Nonlinear Mass Spring Damper with Euler Bernoulli Beam | Jun 17, 2015 |

Bending of a Free Beam | Apr 15, 2015 |

**Physics Forums - The Fusion of Science and Community**