Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Euler Angles - Why Post Multiplication

  1. Jun 2, 2012 #1
    In robotics, you have a co-ordinate frame which is at the base & another which is at the next joint. You want to describe the position and orientation of the 2nd frame with respect to the first in terms of position and orientation. For the position, you use a translation matrix.

    The orientation is described by a rotation matrix which rotates the 2nd frame from it's coincident position with the first frame and brings it to it's final position.

    Let the 1st frame have axis X, Y, Z
    Let 2nd frame have axis x, y, z

    To describe frame 2 in terms or frame 1, you start with both frames very fully coincident at the beginning (i.e. even in orientation).

    Then you have 2 methods.

    1) Fixed Axis angles.
    - you rotate frame 2 by t1 about X - Rx(t1)
    - you rotate frame 2 by t2 about Y - Ry(t2)
    - you rotate frame 2 by t3 about Z - Rz(t2)

    So new orientation of frame 2 is given by

    Rz(t3) * Ry(t2) * Rx(t1)

    (Obviously, you pre-multiply the 1st matrix by the 2nd. And the premultiply the result with the 3rd matrix)

    2) Euler Angles
    2nd way of describing it is by Euler angles - i.e. you rotate the 2nd frame about one of it's own axis (x or y or z), instead of (X, Y or Z)

    - rotate frame 2 by t3 about x - (y becomes y' & z becomes z')
    - rotate frame 2 by t2 about y' - (x becomes x' & z becomes z'')
    - rotate frame 2 by t1 about z" - (x' becomes x'' & y becomes y")

    Now this transform is described again by
    Rz(t3) * Ry(t2) * Rx(t1)

    I want to know how is this 2nd transform derived?

    I know how the first one is derived because I know how to find the rotation matrix for rotating a point about about a fixed axis. And I know that if you are working with column vectors (for the point), you premultiply the 1st rotation matrix by the 2nd rotation matrix.

    However, I am not able to grok how you write the transformation matrices for the 2nd case.
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted