1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Euler equations

Tags:
  1. Nov 9, 2014 #1
    "A rigid lamina (i.e. a two dimensional object) has principal moments of inertia about the centre of mass given by ##I_1=u^2-1##, ##I_2=u^2+1##, ##I_3=2u^2##

    Choose the initial angular velocity to be ##ω = µN \hat{e_1} + N \hat{e_2}##. Define tan α = ω2/ω1,
    which is the angle the component of ω in the plane of the lamina makes with e1. Show that it satisfies:
    ##\ddot{α}+ N^2 \cos α \sin α = 0##"

    (the problem does not says what is N). The problem is on http://www.damtp.cam.ac.uk/user/tong/dynamics/mf3.pdf

    I tried used the Euler equation, considering that ##N_1=N_2=0##

    My Euler equation are:

    ##\dot{\omega_1}+ \omega_2 \omega_3=0##
    ##\dot{\omega_2}- \omega_1 \omega_3=0##
    ##2 \mu^2 \dot{\omega_3}+2 \omega_1 \omega_3 =N_3##

    I tried of several ways of combining this equations , using that tan α = ω2/ω1, but i do not get to ##\ddot{α} + N^2 \cos α \sin α = 0##.

    ¿some hint please?

    Some Hint to do this exercice this????...
     
  2. jcsd
  3. Nov 14, 2014 #2
    Thanks for the post! This is an automated courtesy bump. Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
     
  4. Nov 15, 2014 #3
    I don't know whether this helps, but the first two equations imply that

    x2=C sinα

    x1=C cosα

    where C is a constant.

    Also,

    x3=α'

    Chet
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Euler equations
  1. Euler's equations (Replies: 9)

Loading...