Hi all, I'm having trouble understanding a basic concept introduced in one of my lectures. It says that:(adsbygoogle = window.adsbygoogle || []).push({});

To solve the DE

[tex]y(t) + \frac{dy(t)}{dt} = 1[/tex] where [tex]y(t) = 0[/tex],

using the Euler (forward) method, we can approximate to:

[tex]y[n+1] = T + (1-T)y[n] [/tex] where [tex]T[/tex] is step size and [tex]y[0] = 0[/tex].

I have no idea how this result is obtained, the only thing they say is that in general for

[tex]\frac{dx_1}{dt} = \frac{x_1[n+1] - x_1[n]}{T}[/tex] for [tex]t = nT[/tex].

Can anyone please help me understand how they arrived at the solution for [tex]y[n+1][/tex]? Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Euler forward equation

**Physics Forums | Science Articles, Homework Help, Discussion**