Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Euler Integrals

  1. Jan 31, 2007 #1


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    1. The problem statement, all variables and given/known data

    For fun: show that

    [tex] B(a,b) = \int_0^1{x^{a-1}(1-x)^{b-1}\,dx} = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} [/tex]

    where [itex] a > 0 [/itex], [itex] b > 0 [/itex]. Hint: start from the product [itex]\Gamma(a)\Gamma(b)[/itex] and switch to polar coordinates. The radial integral is proportional to [itex]\Gamma(a+b)[/itex].

    2. Relevant equations

    [tex] \Gamma(a) = \int_0^{\infty}{x^{a-1}e^{-x}\,dx} [/tex]

    3. The attempt at a solution

    [tex] \Gamma(a)\Gamma(b) = \int_0^{\infty}{x^{a-1}e^{-x}\,dx}\int_0^{\infty}{y^{b-1}e^{-y}\,dy} = \int_0^{\infty}\!\!\int_0^{\infty}{x^{a-1}e^{-x}y^{b-1}e^{-y}\,dxdy}

    [tex] x = r\cos\theta, \ y = r\sin\theta, \ \ \ \ dxdy = rdrd\theta [/tex]

    [tex] \Gamma(a)\Gamma(b) = \int_0^{2\pi}\!\!\int_0^{\infty}{(r\cos\theta)^{a-1}e^{-r\cos\theta}(r\sin\theta)^{b-1}e^{-r\sin\theta}\,rdrd\theta}

    [tex] = \int_0^{2\pi}\!\!\int_0^{\infty}{r^{a-1}r^{b-1}(\cos\theta)^{a-1}(\sin\theta)^{b-1}e^{-r(\cos\theta+\sin\theta)}\,rdrd\theta}

    I'm stuck here. I don't know how to sort out the exponential term (which depends on both r and [itex]\theta[/itex]) in order to obtain a separate radial integral.
    Last edited: Jan 31, 2007
  2. jcsd
  3. Jan 31, 2007 #2


    User Avatar
    Science Advisor
    Homework Helper

    There's a trick here:

    [tex] \Gamma (a)=\int_{0}^{\infty} x^{a-1} e^{-x} {} dx [/tex]

    Make the substitution [itex] x=u^{2} [/itex] and get

    [tex] \Gamma (a)=2\int_{0}^{\infty} u^{2a-1} e^{-u^{2}} {} du [/tex]

    Do the same for

    [tex] \Gamma (b)=2\int_{0}^{\infty} v^{2b-1} e^{-v^{2}} {} dv [/tex]

    Consider the product of the 2 integrals+ Fubini's theorem to get

    [tex] \Gamma (a)\Gamma (b)=4\int_{0}^{\infty} \int_{0}^{\infty} u^{2a-1} v^{2v-1} e^{-(u^{2}+v^{2})} {} du {} dv [/tex]

    Switch to polar coordinates [itex] (r,\varphi) [/itex] and perform the "r" integration to get

    [tex] \Gamma (a)\Gamma (b)=2\Gamma (a+b)\int_{0}^{\pi/2} \left(\cos^{2}\varphi\right)^{\frac{2a-1}{2}} \left(\sin^{2}\varphi\right)^{\frac{2b-1}{2}} \ d\varphi [/tex]

    and finally make the substitution [itex] \cos^{2}\varphi=z [/itex]

    You'll get the identity easily, just watch the "-" signs and reversing the order of integration.
    Last edited: Jan 31, 2007
  4. Jan 31, 2007 #3


    User Avatar
    Science Advisor

    The [itex]\theta[/itex] integral is NOT from 0 to [itex]2\pi[/itex], it is from o to [itex]\pi /2[/itex]. I'm not sure why you are doing that however. The problem does not ask you to evaluate the integrals, just show that the two sides are the same.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook