1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Euler-Lagrange equation

  1. Dec 26, 2007 #1
    1. The problem statement, all variables and given/known data

    Let [tex]P[/tex] be a rectangle , [tex]f_{0} : \partial P \rightarrow R)[/tex] continuous and Lipschitz, [tex]C_{0} = \{ f \in C^{2}(P) : f=f_{0} \ on \ \partial P \}[/tex]. and finally [tex]S : C_{0} \rightarrow R[/tex] a functional:

    [tex]S(f) = \int^b_a (\int^d_c (\frac{\partial f}{\partial x})^{2}\,dy)\,dx + \int^d_c (\int^a_b (\frac{\partial f}{\partial y})^{2}\,dx)\,dy[/tex].

    Write Euler-Lagrange equation for S.

    2. Relevant equations



    3. The attempt at a solution

    I tried writing: [tex]S(f) = \int^b_a (\int^d_c (\frac{\partial f}{\partial x})^{2} + (\frac{\partial f}{\partial y})^{2}\,dy)\,dx [/tex], so the proper Lagrangian would be [tex]L(x) = \int^d_c (\frac{\partial f}{\partial x})^{2} + (\frac{\partial f}{\partial y})^{2}\,dy[/tex].

    Then the Euler-Lagrange equation should be [tex]\frac{d}{dx}\frac{\partial L}{\partial f^{'}_{x}} = 0 \leftrightarrow \frac{d}{dx}\frac{\partial }{\partial f^{'}_{x}}\int^d_c (\frac{\partial f}{\partial x})^{2}\,dy = 0[/tex], ([tex]L^{'} = \int^d_c (\frac{\partial f}{\partial x})^{2}\,dy[/tex]) and now since [tex]\frac{dL^{'}}{dx} = \frac{\partial L^{'}}{\partial f_{x}^{'}}\frac{\partial f_{x}^{'}}{\partial x}[/tex], we can rewrite that as [tex]\frac{d}{dx}\frac{\frac{d}{dx}\int^d_c (\frac{\partial f}{\partial x})^{2}\,dy}{f_{xx}^{''}} = 0 \leftrightarrow \frac{d}{dx}\frac{\int^d_c \frac{\partial}{\partial x}(\frac{\partial f}{\partial x})^{2}\,dy}{f_{xx}^{''}} = 0 \leftrightarrow \frac{d}{dx}\frac{\int^d_c 2f_{x}^{'}f_{xx}^{''}\,dy}{f_{xx}^{''}} = 0[/tex]. but what then?
     
    Last edited: Dec 26, 2007
  2. jcsd
  3. Dec 26, 2007 #2

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    You are making this too hard. Let's call [tex]\frac{\partial f}{\partial x}=f_x[/tex] and [tex]\frac{\partial f}{\partial y}=f_x[/tex]. Then the form of the Euler-Lagrange equations for two independent variables is [tex]\frac{\partial L}{\partial f}-\frac{\partial}{\partial x} \frac{\partial L}{\partial f_x}-\frac{\partial}{\partial y}\frac{\partial L}{\partial f_y}=0[/tex] where [tex]L=(f_x)^2+(f_y)^2[/tex].
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Euler-Lagrange equation
Loading...