Dear all,(adsbygoogle = window.adsbygoogle || []).push({});

I read from a book discussing about the scattering that if we consider the scattering of spin-1/2 particles (two particle scattering), we can describe the effect of spin in terms of the "exchange potential operator", which satisfies

[tex]V_e^{\text{op}}\psi(\mathbf{r}) = V_e(r)\psi(-\mathbf{r})[/tex]

where [tex]V_e(r)[/tex] is a c-number and we assumed the potential to be central. In this way, the radial Schrodinger equation in the center of mass frame would be

[tex] \big[\nabla^2 + k^2 - U_d(r)\big]\psi(\mathbf{r}) - U_e(r)\psi(-\mathbf{r}) = 0[/tex] where [tex]U_d(r) = 2m V_d/\hbar^2[/tex], [tex] U_e(r) = 2m V_e/\hbar^2 [/tex] and [tex]V_d(r)[/tex] is the "direct potential" that unrelated to spin.

My question is, how can we find the "exchange potential"? and why we have to introduce an "exchange potential operator" first? Thanks for any instructions!

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Exchange potential operator?

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

Loading...

Similar Threads for Exchange potential operator | Date |
---|---|

I Probabilities Associated with Sudden Changes in Potential | Apr 15, 2018 |

A Electron-Hole- or Many-Electron Exchange Interaction | Mar 25, 2018 |

I Defining exchange statistics of anyons in terms of Berry phase | Mar 17, 2017 |

I Commuting observables vs. exchanging measurements | Feb 21, 2017 |

I What mediates the exchange force? | Feb 18, 2017 |

**Physics Forums - The Fusion of Science and Community**