Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Excited states

  1. Mar 8, 2012 #1
    My book calculates the ratio of probability to find an atom in an excited state vs finding it in the ground state in the sun and gets approx 1/109.
    Essentially this must mean that the ratio of the multiplicities of the system must also be equal to this, i.e.:

    [itex]\Omega[/itex]2/[itex]\Omega[/itex]1 = 1/109

    How can this be possible? Say you excite the atom. The energy that the surroundings in the sun loses is tiny compared to its total energy. So shouldnt the two multiplicities be approximately the same?
     
  2. jcsd
  3. Mar 8, 2012 #2

    mathman

    User Avatar
    Science Advisor
    Gold Member

    There is something very confusing about your question. There are few (if any) atoms in the sun. Just about everything is fully ionized.
     
  4. Mar 8, 2012 #3
    It's in the sun's atmosphere.
     
  5. Mar 9, 2012 #4

    mathman

    User Avatar
    Science Advisor
    Gold Member

    I am not sure what you mean by the sun's atmosphere, since it is entirely in a gaseous or plasma state. The surface is close to 6000 K. I presume everything is highly ionized, but I am no expert on the subject.
     
  6. Mar 10, 2012 #5
    Then say its somewhere, where everything is not ionized. This has no relevance for my question, which is about the conceptual understanding of the boltzmann distribution!
     
  7. Mar 10, 2012 #6
    Really? This would imply that every energy level is equally likely to be filled, which I hope seems unlikely. So what difference between the ground and the excited state haven’t you taken into account?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook